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A. Comprehensive Introduction of Al-
Generated Image Detectors

Based on the detection criteria, the methods for detecting
Al-generated images can be broadly categorized into the
following approaches: detection based on pixel-domain fea-
tures, detection based on frequency-domain features, detec-
tion leveraging pre-trained model features, detection utiliz-
ing fused features, as well as rule-based detection methods.
Detection based on pixel-domain features of images iden-
tifies authentic or synthetic images through common pat-
terns in pixel-level characteristics, which primarily encom-
passes approaches utilizing steganalysis features [42], tex-
ture features [18, 44, 47], color features [5, 58], local fea-
tures [3, 9, 26], reconstruction features [4, 7, 11, 19, 34,
40, 41, 49, 60, 69], internal correlation features [8, 56, 70]
and physical features [50]. Besides, Tan et al. [53] first
proposed a gradient-based detection method (LGrad) that
employs gradient maps derived from pretrained CNN mod-
els. This method trains a binary classifier on gradient map
datasets to distinguish Al-generated images from authen-
tic ones. By eliminating the influence of image seman-
tics on the detector, this approach effectively mitigates the
model’s dependency on training data. However, due to its
reliance on specific pretrained architectures, LGrad demon-
strates limited generalizability when applied to images gen-

erated by non-CNN-based models.

Detection based on frequency domain characteristics of
images primarily identifies artificial patterns by analyzing
common characteristics exhibited in the frequency domain
of generated images. This approach typically converts im-
ages into spectrum maps for subsequent analysis through
detection networks. Representative methods include: Dis-
crete Fourier Transform (DFT)-based detection [13, 14, 22,
33, 68], Discrete Cosine Transform (DCT)-based detection
[2, 16, 46], and Fast Fourier Transform (FFT)-based detec-
tion [23]. Detection based on pre-trained model features
leverages large-scale models to accomplish detection tasks.
Several research efforts directly utilize the powerful feature
extraction capabilities of pre-trained models for detection
[12, 17, 45, 66]. Notably, Ojha et al. [45] employ the pre-
trained CLIP model to extract image features for detector
training, enabling the learning of more balanced decision
boundaries and thereby enhancing the detector’s general-
ization across different generative models. Koutlis and Pa-
padopoulos [30] propose RINE, which extracts intermediate
image representations from the CLIP image encoder, maps
them into a learnable forgery-aware vector space, and in-
corporates a trainable module to predict the importance of
each encoder layer. Other approaches focus on fine-tuning
vision-language models [6, 27-29, 39, 55, 62, 64] or large
language models [15] for detection tasks. Among these,
C2P-CLIP [55] introduces class-agnostic prompts to rein-
force the conceptual distinction between real and generated
images through contrastive learning, while implementing
CLIP fine-tuning via Low-Rank Adaptation (LoRA) [20] to
develop a universal detector for generated images. Detec-
tion methods based on fused features can be further cat-
egorized by modality quantity into single-modality fused
feature detection methods and multi-modality fused feature
detection methods. Single-modality fused feature detec-
tion methods refer to approaches that solely integrate dif-
ferent features within images, including pixel-domain fea-
ture fusion [1, 24, 25, 32, 48, 63], frequency-domain fea-
ture fusion [36, 54], hybrid pixel-frequency domain fea-
ture fusion [31, 37, 43, 61], and the integration of spa-
tial features with semantic features in images [65]. Multi-
modality fused feature detection methods involve the fu-
sion of features from diverse modalities such as images
and texts [35, 51, 67]. Notably, Sha et al. [51] focused
on detecting text-to-image model generated content, reveal-
ing that generated images closer proximity to their prompt
texts compared to real images. Leveraging this observa-
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tion, they proposed DEFAKE, which concatenates CLIP-
extracted textual and visual features to construct discrimi-
native features for detection. Rule-based detection methods
typically leverage the differences in sensitivity between two
categories of images to the same operations as the detection
criterion. These approaches generally require no training
process, and since the detection procedure does not rely on
classifiers, the results tend to be unbiased [10, 49, 52, 57].
In a distinct approach, Ricker et al. [49] proposed Aerob-
lade, which utilizes the reconstruction error of autoencoders
combined with the Learned Perceptual Image Patch Simi-
larity (LPIPS) metric to detect generated images.

In summary, regarding generative image detection, most
studies employ model-based supervised learning, some uti-
lize semi-supervised [21] or unsupervised paradigms [47],
few use instance-based approach to perform detection. The
features such as noise patterns in the pixel domain and fre-
quency domain, texture, color information, and mapping
geometry have turned into detection cues. Some studies aim
to enhance the generalization of detection methods when
faced with different generative models. Besides, robustness
against common image processing also becomes an aspect
of evaluating detection methods.

B. Real-World Applications of Transmission
and Re-digitization

Al-generated image detection fundamentally differs from
traditional image classification tasks. A key distinction is
that, for traditional classification tasks such as ImageNet1K,
real-world applications typically involve photos captured
directly by users or devices, such as autonomous vehicle
cameras. However, with the rise of social media and other
platforms, an image suspected to be Al-generated may have
already undergone multiple rounds of transmission or even
appeared in physical form.

In real-life scenarios, the images available for detection
are often subjected to lossy internet transmission through
social media platforms. Therefore, incorporating such
transmitted images into the test set is crucial for a robust
evaluation of detection algorithms.

Regarding re-digitization, we first present real-world ap-
plications of this process to explain why re-digitization is
essential for Al-generated image detection. Re-digitization
refers to the process of converting an existing digital image
(e.g., stored in formats such as JPG or PNG) into a phys-
ical form (e.g., printing or displaying it on a screen) and
then converting it back into a digital format through meth-
ods such as scanning or photography.

Re-digitization has numerous real-world applications,
including the following:

» Capturing photos of images displayed on devices, where
exporting images is not permitted.

* Photographing screens to save images that are protected
against direct downloads or screenshots in web pages or
Apps.

* Scanning printed materials, such as newspapers or maga-
zines, to create electronic versions of articles or images.

» Capturing projected content during presentations when
direct access to slides is unavailable.

* Photographing artwork in museums or galleries where
digital copies cannot be obtained, for documentation or
personal use.

» Recording street art, graffiti, posters, or other outdoor art-
works for preservation or documentation.

Therefore, detection algorithms must adapt to diverse re-

digitization processes, including scanned documents, pho-

tographed screens, or printed photographs. By incorporat-
ing these scenarios into benchmarks, we ensure that detec-
tion algorithms are practical and reliable across domains.

Additionally, including re-digitized samples in benchmarks

forces algorithms to learn more generalized features rather

than relying solely on subtle artifacts in the original digital
image. This enhances their performance in unknown envi-
ronments and against emerging generative models.

C. Training Details

Hardware and Environment: All training and testing
were conducted on a single NVIDIA RTX 4090 GPU us-
ing PyTorch 2.0.1.

Training Details: For all detectors, we adopted the training
setup used in Genlmage [71] and AIDE[65]. Specifically,
training was conducted on GenlmageSD1.4, where a subset
of SDv1-4 was used, consisting of 162,000 Al-generated
images from SDv1-4 and 162,000 real images from Ima-
geNet, with an additional 6,000 Al-generated and 6,000 real
images reserved for validation.

For certain methods, such as CNNSpot [59], GramNet
[38], DIRE [60] and DNF [69], only pretrained weights
from the ProGAN dataset were available. Therefore, we
replicated their respective training settings and data aug-
mentation procedures to ensure thorough training. For
methods already trained and validated on SDv1-4, we di-
rectly utilized their publicly released pretrained weights.
Fine-Tuning Details To provide a more comprehensive
and realistic evaluation of each detector, we fine-tuned all
17 detection models using a subset of RRDataset-Original.
Specifically, we selected 1,250 real images and 1,250 Al-
generated images for training, with an additional 250 real
and 250 Al-generated images for validation.

Fine-tuning was performed using a batch size of 64 for 5
epochs with the AdamW optimizer, starting with an initial
learning rate of 5 x 10~%. We employed a learning rate
decay strategy and early stopping to optimize performance.
VLM Prompt Selection: To maximize the detection per-
formance of VLMs, we manually designed 10 different



prompt templates and selected the one with the highest av-
erage accuracy for use in the main text. Notably, previous
studies have rarely explored Al-generated image detection
using VLMs, making it impossible to directly adopt existing
settings. Therefore, our approach represents a novel effort
in optimizing prompt engineering for this task.

D. Additional Results for RRBench

In this section, we present the impact of different training
datasets on detector performance and compare the results
of the Human-Inspired In-Context Learning Approach with
other in-context learning methods.

D.1. Impact of Different Training Sets

To further evaluate the best-performing detector on
RRDataset, DRCT-ConvB [7], and the most robust model,
AIDE [65], we conduct additional testing on RRBench us-
ing the following model weights:
For DRCT-ConvB[7]:
1. Trained on SDv1-4, with RRDataset fine-tuning
2. Trained on SDv1-4, without RRDataset fine-tuning
3. Trained on DRCT-2M, without RRDataset fine-tuning
e DRCT-2M is a large-scale dataset generated using ad-
vanced diffusion models, primarily SD XL. However,
it differs from RRDataset, which uses SD 3.5 and
FLUX as generators.
4. Trained on DRCT-2M, with RRDataset fine-tuning
For AIDE [65]:
1. Trained on SDv1-4, with RRDataset fine-tuning
2. Trained on SDv1-4, without RRDataset fine-tuning
As shown in Tab. 1, fine-tuning on RRDataset plays a
crucial role in improving model performance. For DRCT-
ConvB, fine-tuning on RRDataset led to a 33.67% accuracy
increase when pretrained on SDv1-4 and a 21.56% increase
when pretrained on DRCT-2M. Similarly, for AIDE, fine-
tuning resulted in a 26.77% improvement in accuracy.

The choice of pretraining datasets also significantly im-
pacts performance. Without fine-tuning, the accuracy gap
between DRCT-ConvB trained on DRCT-2M and SDvl-
4 reached 12.71%, indicating that larger and more ad-
vanced training datasets exhibit stronger transferability on
RRBench. However, after fine-tuning, the accuracy differ-
ence between the two models shrank to just 0.69%, suggest-
ing that fine-tuning on a more advanced dataset can com-
pensate for differences in pretraining data.

This finding implies that rather than continually expand-
ing training datasets—which can be computationally expen-
sive in terms of generation and retraining costs—similar
performance gains may be achievable through targeted fine-
tuning, making it a more efficient and scalable alternative
for future Al-generated image detection improvements.

D.2. Comparisons with Other In-context Learning
Strategies

Our Approch: We observe a notable shift in human
decision-making criteria when evaluating re-digitized and
transmitted images. For re-digitization, over 25% of partic-
ipants attributed their judgments to lighting and reflection-
related artifacts, while only 10% considered image layout
or realism as key factors. Conversely, for network transmis-
sion, factors such as sharpness, edges, and texture quality
accounted for more than 52% of responses.

In designing our in-context learning approach, we aim
for VLMs to filter out potential confounding factors, such
as compression artifacts from transmission and moiré pat-
terns from screens and printed surfaces. To achieve this, we
developed the following in-context learning template.

(Robustness-Oriented In-Context Learning h

Act as a forensic image analyst specializing in origin classification. An-

alyze images through their intrinsic visual patterns while disregarding

transmission/re-digitization artifacts. Focus on fundamental generation
traces rather than secondary distortions.

Contextual Examples:

* [Transmitted Image] Compressed JPEG with blocking artifacts, but
shows consistent micro-textures in hair strands and natural skin pore
variation — Real

¢ [Transmitted Image] Lossy blurred image with chromatic aberra-
tion, yet reveals perfect fractal patterns in the background and asym-
metric eyelash duplication — AlI-generated

* [Re-digitized Image] A scanned copy with a moiré pattern, but the
content and details of the picture are real — Real

* [Re-digitized Image] Photographed print showing lens glare, yet
contains Diffusion-typical floating specks and impossible light in-
tersections — Al-generated

Analysis Protocol:

1. Primary Focus Areas:

* Microscopic texture coherence (brush strokes/sensor noise pat-
terns)

* Image content detail preservation beyond compression/scanning

* Biological imperfection consistency (asymmetric irises, skin
translucency)

« Physical light interaction validity (shadow falloff, subsurface
scattering, building material)

2. Artifact Discounting:

¢ Ignore format-specific compression patterns (JPEG blocking,
slight color shift)

* Disregard scanning artifacts (dust particles, Newton rings)

¢ Overlook resampling distortions (aliasing, interpolation errors)

3. Decisive Indicators:

¢ Al-generated artifacts (e.g., diffusion-based oversmoothing,
GAN:-induced repetition, or hyperrealism)

¢ Anatomical plausibility under 3x digital magnification

¢ Material property consistency (metallic reflections, cloth drap-
ing)

Output JSON:

k{ "classification": "AI-generated/Real" }

CoT prompt for Comparison:



Table 1. Impact of Different Training Datasets on Model Accuracy.

Model Original Transmission Re-digitization Overall
Fake(%) Real(%) | Fake(%) Real(%) | Fake(%) Real(%) | ACC(%)
DRCT-ConvB
SDv14- w finetune 93.52 95.52 92.82 95.09 64.34 96.22 89.59
SDv14- w/o finetune 53.64 58.21 39.91 73.74 51.42 54.99 55.92
DRCT2M- w finetune 95.15 94.09 94.73 92.94 68.35 96.42 90.28
DRCT2M- w/o finetune 68.00 73.42 66.73 73.14 49.74 80.74 68.63
AIDE
SDv14- w finetune 78.95 78.94 74.72 78.75 76.04 83.13 78.42
SDv14- w/o finetune 56.04 61.69 13.40 81.88 28.78 68.10 51.65

(Chain-of-Thought (CoT) Prompt for AI-Generated )
Image Detection

Task: You are an expert in forensic image analysis. To determine

whether an image is AI-generated or real, follow a structured reason-

ing process. Do not rely solely on immediate intuition; instead, break
down your decision step by step.

Step 1: Content Understanding & Context

* What is the subject matter of the image? Describe its main elements
(e.g., people, objects, background).

* Does anything seem out of place or conceptually inconsistent?

Step 2: Fine-Grained Visual Inspection

* Examine details such as textures, edges, and transitions. Are there

any abnormal smoothness, inconsistencies, or unnatural repeti-

tions?

Evaluate lighting and reflections—do they follow physical laws?

* Consider depth perception and perspective—is everything logically
structured?

Step 3: Logical Contradictions & Anomalies

e Are there elements that should logically interact but do not (e.g.,
missing object shadows, disconnected reflections)?

« If the image contains humans, do facial features, hands, or expres-
sions look artificial or anatomically incorrect?

* Does the image resemble known Al-generated artifacts (e.g.,
diffusion-based oversmoothing, GAN-induced repetition, or hy-
perrealism)?

Step 4: Final Reasoning & Justification

* Summarize the strongest indicators supporting either classification.

* Make a final classification decision based on reasoning.

Output Format (JSON):

{ "classification": "AI-generated/Real",
"reasoning": "Step-by-step breakdown

of key factors influencing the decision"}

\. J

Initial prompt for Comparison:

(Prompt for Vision-Language Models )

Act as an expert in computational photography and generative Al. An-
alyze the visual characteristics to classify its origin as either real-world
captured or Al-generated.

Your analysis should:

- Examine technical artifacts (unnatural textures, perfect symmetry,
atypical shadow patterns)

- Check for common GAN/diffusion model fingerprints

- Evaluate biological plausibility (eyes, hair, skin textures)

- Identify hyperrealistic elements vs. physical-world imperfections

\Format response as JSON: {“classification™: “Al-generated/Real” }

Comparison Results: Tab. 2 presents a comparison of
four different prompting strategies. Our human-inspired
Robustness-Oriented In-Context Learning achieves the best
performance on 3 out of 4 VLMs, demonstrating its ef-
fectiveness in enhancing detection robustness, especially in
challenging real-world conditions such as internet transmis-
sion and re-digitization.

The CoT+In-Context Learning approach achieves no-
table improvements on original images, suggesting that ex-
plicit reasoning chains help VLMs analyze fine details and
generative traces more accurately when image quality is in-
tact. However, its performance deteriorates significantly on
transmitted and re-digitized images, indicating a strong re-
liance on pristine image quality. This suggests that CoT-
based reasoning alone is insufficient to mitigate the impact
of information loss, compression artifacts, and noise distor-
tions introduced in real-world scenarios.

In contrast, our approch not only ensures higher robust-
ness but also achieves the best overall performance across
different VLMs, demonstrating that a robustness-oriented
learning strategy is more effective in guiding VLMs to
maintain high detection accuracy, even under degraded con-
ditions.

E. Comparison of Human Attention Regions

E.1. Human Attention Map Generation

Data Collection: In this experiment, we select a set of im-
ages {I1, I, ..., Ik} for analysis. Each participant views
the images on an screen and marks the Regions of Interest
(ROIs) by drawing closed contours with a stylus. To en-
sure consistency, the following conditions should be met:
The displayed images should have the same resolution and
scaling across all participants.

ROI Data Recording: Suppose there are P participants.
For each image [j, participant p (where p = 1,...,P)
draws one or more closed polygons that represent their
ROIs. We denote these polygons by

{Qp’k,h Qp,k,Q, .. }



Table 2. Performance Comparison for Human-Inspired
Robustness-Oriented In-Context Learning.

Original Transmission Redigital ACC

Initial prompt
GPT-4o-latest 92.94 84.71 73.08 83.58
Claude-3.7-sonnet 89.85 83.72 73.87 82.48
Gemini-2-flash 85.27 74.80 71.76 77.28
Grok-2-vision 68.99 73.08 64.82 68.96
Initial prompt + In-Context Learning (2-shot)
GPT-4o-latest 91.85 84.06 74.55 83.49
Claude-3.7-sonnet 87.10 83.95 75.22 82.09
Gemini-2-flash 85.84 75.12 75.27 78.74
Grok-2-vision 67.28 72.86 66.71 68.95
CoT prompt + In-Context Learning (2-shot)
GPT-4o-latest 96.27 83.58 71.45 83.77
Claude-3.7-sonnet 91.28 84.29 73.92 83.16
Gemini-2-flash 88.79 73.52 78.31 80.21
Grok-2-vision 71.02 71.47 65.93 69.47
Robustness-Oriented In-Context Learning (2-shot)
GPT-40-latest 95.67 88.17 78.58 87.47
Claude-3.7-sonnet 92.26 84.97 71.76 85.00
Gemini-2-flash 88.38 74.99 75.78 79.72
Grok-2-vision 72.86 71.52 7143 71.94

Each polygon €2, 1, ; can be represented by a set of vertex
coordinates, for example:

Qpk,j = {(l’pk,j,lv Yp kgl )s e« (xp,k,jmj ) ypyk,jmj)}-

Constructing the Binary Interest Mask: Each image I},
has a size of W x H. We define a matrix M), ;, to represent
participant p’s interest area on image /. Let the final set of
aligned ROIs for participant p on Ij be {2 ; 1,7 ; o, .. .}.
For any pixel (z,y), we have:

)1, if(x,y) € Q;hl U Q;,k,z U...,
My, 9) = 0, otherwise.
M, i (z,y) € {0,1} defines a binary mask: 1 indicates that
pixel (z,y) lies within the participant’s drawn ROI, while 0
indicates no interest in that pixel.

Then, we can compute an averaged mask:

P
1
Hk(xay) = F ZMp,k(x7y)'
p=1

In this case, Hy(z,y) lies within the interval [0, 1] and can
be interpreted as the proportion that pixel (z,y) is consid-
ered an ROI across all participants.

Generating the Heatmap: To visualize the averaged mask
Hy(z,y) we apply a color mapping that maps numerical
values to colors and then overlay this heatmap on the origi-
nal image. Typical steps include:

* Rescale Hy(z, y) from [0, 1] into the required color space.
* Adjust the transparency level to overlay the heatmap on

the original image.

The resulting heatmap intuitively reveals which regions of
the image draw higher or lower attention among the partic-
ipant group.

E.2. Result

As shown in Fig. 1 , participants in the original image
group primarily focused on the main subject of the image,
concentrating around the central area with minimal atten-
tion given to the edges and background. In the transmis-
sion group, participants also focused on the main subject,
indicating that transmission did not significantly alter atten-
tion regions; the drop in accuracy here may be attributed
to an overall reduction in image quality. However, in the
re-digitization group, participants’ attention was more dis-
persed across the background, with less focus on the main
subject. This shift suggests that re-digitization may lead to
a diffusion of attention, likely contributing to the observed
decrease in accuracy.

F. Frequency Domain Analysis of Transmis-
sion and Re-digitization

To analyze the frequency characteristics of the images,
we applied the Fast Fourier Transform (FFT) to convert
the spatial-domain image f(z, y) into its frequency-domain
representation F'(u, v). The Fourier Transform decomposes
the image into its sinusoidal components, with |F(u, )]
representing the amplitude and ZF(u,v) the phase. The
mathematical formulation of the 2D Fourier Transform is
expressed as:

M-1N-1

Fluw)= 30 3 flay)-e (809

=0 y=0

where (z,y) are pixel coordinates in the spatial domain,
and (u, v) are the corresponding frequency coordinates. For
better visualization, we applied the FFT shift operation,
which repositions the zero-frequency component (DC com-
ponent) to the center of the spectrum. This is mathemati-
cally expressed as:

M N
Fitea (u, v) = F (u + vt 2) . )

The magnitude of the spectrum was computed as:

|F(u,v)| = VRe(F(u,v))2 +Im(F(u,v))2.  (3)

To improve visualization, the magnitude spectrum was
log-transformed to compress the dynamic range of the val-
ues. Finally, the spectrum was normalized to the range
[0,1] for better contrast. Fig. 2 and Fig. 3 illustrates the
frequency-domain representation of the analyzed images. It
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Figure 1. Comparison of Human Attention Regions in Original, Transmitted, and Re-digitized Images.



is evident that both transmission and re-digitization signifi-
cantly alter the frequency domain characteristics of images,
whether real or Al-generated. This alteration may explain
the failure of frequency-dependent methods like Freq-Net
and Fredect in detecting transmitted and re-digitized im-
ages.

G. Visualization of RRDataset.

In this section, we present direct examples from RRDataset
to illustrate its key characteristics. Fig. 4 and Fig. 5 show-
case Al-generated special-scenario images, while Fig. 6 il-
lustrates a comparison of images in their original, transmit-
ted, and re-digitized states.

H. Further Discussion and Suggestion

The rapid advancements in generative Al technologies have
led to profound societal implications, especially in the con-
text of Al-generated image detection. On one hand, these
technologies offer creative opportunities, enhancing indus-
tries such as media, design, and entertainment. On the other
hand, they pose significant challenges, including the spread
of misinformation, digital forgeries, and potential misuse in
sensitive domains like journalism, legal evidence, and intel-
lectual property.

Our RRDataset provides a critical benchmark for eval-
uating the robustness of detection algorithms in real-world
scenarios, directly addressing these challenges. By incorpo-
rating transmission and re-digitization into the dataset, we
simulate practical conditions where Al-generated images
are often manipulated. This ensures that detection meth-
ods are not only technically effective but also reliable in
real-world scenarios.

Finally, by revealing robustness gaps in current detec-
tion methods, our work calls for the development of more
generalized and resilient algorithms. This is essential not
only for technical progress but also for fostering trust and
accountability in Al-driven societies.

Based on the findings of our study, we propose the fol-
lowing recommendations:

1. For Researchers: When developing new Al-generated
image detectors, it is crucial to go beyond focusing
solely on accuracy and consider their robustness in real-
world scenarios. The integration of diverse features
and leveraging human-like few-shot learning capabilities
could be a promising direction for future advancements.

2. For Addressing the Trust Crisis: Given the severe trust
crisis currently emerging, especially in highly sensitive
special-scenario images, skepticism towards authentic
news content may significantly undermine the credibility
and effectiveness of information dissemination.

3. For Generative Model Developers: Considering the
rapid pace of advancements in generative models,

we recommend incorporating imperceptible watermarks
into Al-generated content. This measure would ensure
transparency and uphold people’s right to know the ori-
gins of the content they encounter.

I. Limitation

Benchmark Limitations: Although we have endeavored
to include as many detection methods as possible, includ-
ing the latest works from KDD 2025, AAAI 2025, and
ICLR 2025, some proprietary methods could not be in-
corporated into RRBench. Additionally, it is possible that
newer open-source detectors have not yet been included.
We are committed to continuously updating and curating
detection methods in future iterations.

Dataset Limitations: RRDataset includes some of the lat-
est and most powerful generative models. However, newer
and more advanced models will likely continue to emerge,
which may not be represented in RRdataset. To address this,
we plan to update the RRDataset continuously in the future.
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