
CoA-VLA: Improving Vision-Language-Action Models via
Visual-Textual Chain-of-Affordance

Supplementary Material

6.1. Video Demo
We provide a video recording in the supplementary mate-
rial.

Table 3. Summarization for the number of demonstrations and
average trajectory length for our real-world tasks.

# Task # of Demonstrations Average Trajectory Length

1 PlaceCar 89 301.8
2 PlaceBread 102 113.2
3 NailHammer 80 182.8
4 PourTea 91 429.4
5 CleanTrash 185 114.3
6 WipeWater 62 199.9
7 HangCup 83 131.4

6.2. Evaluation Tasks
In this section, we give a detailed description of the eval-
uated tasks that we discussed in Table 1. We provide the
number of demonstrations for each task and the average tra-
jectory length in Table 3.
• PlaceCar. We randomly place the toy car on the right

side of the drawer. The model is asked to pick up the toy
car, put it into the drawer, and eventually close the drawer.
This is a long-horizon task that requires multiple steps of
action.

• PlaceBread. The model needs to pick up the bread and
place it on an empty spot on the plate, avoiding placing it
on the fruit. The bread is randomly placed on the table.
The model needs to pick up the bread and place it on the
empty spot on the plate.

• NailHammer. We evaluate the model’s proficiency in
utilizing tools effectively by assessing its ability to per-
form a sequence of precise actions with a hammer. The
model must first identify the correct grasp point on the
hammer, ensuring a stable and ergonomic grip suitable
for controlled operation. It must then carefully pick up
the hammer without causing it to topple or disturb its sur-
roundings. Once the hammer is securely held, the model
is tasked with driving a nail into a designated spot with
precision.

• PourTea. In this task, the robot is required to perform a
sequence of actions involving a tea cup and a teapot. First,
the robot must place the tea cup onto the tea tray. Next, it
needs to pick up the teapot and pour tea into the teacup.
Both the tea cup and the teapot are randomly positioned
within a defined range on the table. A key aspect of the

task is the robot’s ability to accurately grasp the teapot by
its stem. To ensure consistency during data collection, the
tea pot’s stem is always oriented facing the robot, sim-
plifying the grasping process while still challenging the
model’s precision and manipulation skills.

• CleanTrash. In this task, the robot is required to perform
a sequence of actions to clean up trash on a table. The
task has two distinct scenarios. In the first scenario, with
no obstacles, the robot must identify and pick up the ran-
domly placed trash, then deposit it into the trash bin. The
trash items are distributed across the table in a random
manner. In the second scenario, a flower pot is placed on
the table as an obstacle. The robot must avoid colliding
with the flower pot while picking up the trash and placing
it into the trash bin. The trash’s location remains random,
and the robot must navigate carefully to avoid knocking
over the flower pot during the cleanup process. A key as-
pect of this task is the robot’s ability to accurately avoid
the flower pot while maintaining efficiency in picking up
and discarding the trash.

• WiperWater In this task, the robot is required to clean
up water from a table by using a sponge. The sponge is
placed on the right side of the table, and the robot must
pick it up and use it to wipe the water from the surface,
moving from right to left. During this process, the robot
must avoid any objects placed on the table, such as vases,
cups, boxes, and other items. A key challenge in this
task is the robot’s ability to manipulate the sponge ef-
fectively while navigating around the obstacles without
causing any collisions, ensuring that the entire table is
cleaned efficiently. The robot’s precision in both grasp-
ing the sponge and avoiding the table items is critical for
completing the task successfully.

• HangCup In this task, the robot is required to pick up
cups that are randomly scattered on the table and hang
them on a cup rack. The robot must handle the cups care-
fully to avoid damaging them and ensure that the rack is
not disturbed or knocked over during the process. The
task challenges the robot’s precision in both grasping the
cups and placing them securely on the rack while main-
taining stability in the environment. Successful comple-
tion relies on careful manipulation and accurate place-
ment.

Setup for visual generalization. In this scenario, we
evaluate the model’s robustness and its ability to generalize
visual perception across diverse and challenging environ-
mental conditions. The robot is tasked with performing ma-



Visual Generalization

PlaceCar

HangCup

WipeWater

PlaceBread

NailHammer

CleanTrash

PourTea

Visual Generalization

Figure 6. Visual Generalization. We evaluate each method on multi-task learning and visual generalization, which includes handling
additional distractors and interference from colored light. We also test the ability to grasp objects of the same type but with varying shapes,
such as different teapots, as well as teapots in different orientations.

nipulation tasks while navigating visual complexities such
as randomly placed distractors, varying lighting conditions,
and a visually cluttered, colorful background. These chal-
lenges are designed to test the model’s capability to stay
focused on the primary task, effectively filter out irrelevant
visual distractions, and adapt to dynamic and unpredictable
visual environments. The objective is to ensure the robot
can consistently and accurately identify and interact with
target objects, even under significant deviations from typi-
cal operational settings.

6.3. Details for Real Robot Experiments
We train our method in a multi-task setting without rely-
ing on pre-trained weights from DiffusionVLA. Instead, we
leverage our constructed dataset for pre-training. Specifi-
cally, we initialize the learning rate at 2e-5 and maintain a
fixed learning rate throughout the pre-training phase, which
spans 5 epochs. During this stage, the parameters of the
pre-trained Vision-Language Model (VLM) are frozen, and
LoRA is employed to fine-tune the model. For fine-tuning,
we adopt a similar approach, starting with an initial learn-
ing rate of 2e-6. However, in this phase, we apply a cosine
learning rate decay schedule and train the model for an addi-
tional 5 epochs. This training strategy ensures both effective
adaptation and stability across pre-training and fine-tuning
stages, optimizing the model for multi-task performance.

For the baselines, we generally adopt a consistent train-
ing strategy. In the case of OpenVLA, the vanilla imple-
mentation utilizes only a single camera view. To extend
this, we incorporate all three camera views, feeding each
view into the same visual encoder and concatenating their

outputs for processing. We leverage OpenVLA’s pre-trained
weights and trains for 20 epochs, as we observe that it typ-
ically requires a longer training time to achieve conver-
gence. For the Diffusion Policy, we utilize DistilBERT to
process language instructions, following an approach sim-
ilar to YAY [41]. As for DiffusionVLA, we employ their
pre-trained weights and construct a reasoning dataset us-
ing their data construction pipeline to maintain consistency
with their methodology. To ensure fair evaluation, we use
the final checkpoints of all models, including ours, avoiding
any form of cherry-picking. This approach allows for a ro-
bust comparison and highlights the performance differences
across the various models.

6.4. Details for LIBERO Simulation
LIBERO is a robot learning benchmark comprising over
130 language-conditioned manipulation tasks. We follow
the setting as in OpenVLA [22] open-sourced code and
test on four task suites: LIBERO-Spatial, LIBERO-Goal,
LIBERO-Object, and LIBERO-Long.

Each suite includes 10 distinct tasks with 50 demonstra-
tions per task. Each task suite emphasizes unique chal-
lenges in imitation learning: LIBERO-Goal features tasks
with similar object categories but different goals. LIBERO-
Spatial requires policies to adapt to varying spatial arrange-
ments of the same objects. LIBERO-Object keeps the lay-
out consistent while changing the objects. During exper-
imentation, our method uses a static camera, and a wrist-
mounted camera all methods are evaluated across 1500 tri-
als in total. We filter out the failure data and increase the
image resolution to 224→ 224. The affordance data is gen-



[object]: None
[grasp]: None
[spatial]: The hammer can be place at [[0.74,
0.68], [0.73, 0.68], [0.72, 0.67]].
[movement]:The robot can move to [[0.65,
0.51], [0.64, 0.49], [0.64, 0.49], [0.63,
0.49] , …].

NailHammer

[object]: The handle is at [0.48, 0.5, 0.57,
0.58].
[grasp]: The grasping point of the handle is
at [0.53, 0.54].
[spatial]: The car can place at [[0.53, 0.54],
[0.52, 0.54], [0.51, 0.53]].
[movement]: The robot can move to [[0.6,
0.3], [0.6, 0.3], [0.6, 0.3], …].

PlaceCar

[object]: The handle is at [0.51, 0.64, 0.58,
0.7].
[grasp]: The grasping point of the handle is
at [0.55, 0.67].
[spatial]: The car can place at [[0.53, 0.54],
[0.52, 0.54], [0.51, 0.53]].
[movement]: The robot can move to [0.57,
0.68], [0.57, 0.68], [0.57, 0.69], …].

PlaceCar

[Object]:The bread is at [0.69, 0.59, 0.75, 0.66].
[grasp]: The grasping point of the bread is
[0.71, 0.63].
[spatial]: The bread can place at [0.59, 0.69],
[0.58, 0.69], [0.57, 0.68]].
[movement]: The robot can move to [[0.65,
0.37], [0.66, 0.37], [0.68, 0.38], …].

PlaceBread

[object]: The brush is at [0.63, 0.54, 0.68,
0.61].
[grasp]: The grasping point of the brush is
[0.65, 0.57].
[spatial]: None
[movement]: The robot can move to [[0.62,
0.38], [0.62, 0.38], [0.63, 0.38], [0.64,
0.39], …].

WipeWater

[object]: The rubbish is at [0.76, 0.7, 0.83,
0.8].
[grasp]:The grasping point of the rubbish is
[0.79, 0.75].
[spatial]: The rubbish can place at [[0.54,
0.76], [0.53, 0.76], [0.52, 0.75]].
[movement]: The robot can move to [[0.61,
0.47], [0.62, 0.46], [0.63, 0.44], …].

CleanTrash

[object]: The cup is at [0.7, 0.56, 0.75, 0.64].
[grasp]: The grasping point of the cup is at
[0.72, 0.6].
[spatial]: The cup can place at [[0.59, 0.58],
[0.58, 0.58], [0.57, 0.57]].
[movement]: The robot can move to [0.62,
0.34], [0.62, 0.34], [0.61, 0.34], …].

PlaceCup

[object]: None
[grasp]: None
[spatial]: The cup can place at [[0.57, 0.72],
[0.56, 0.72], [0.55, 0.71]].
[movement]: The robot can move to [ [0.55,
0.62], [0.55, 0.63], [0.55, 0.63], …].

PourTea

[object]: The teapot is at [0.69, 0.6, 0.75, 0.71].
[grasp]: The grasping point of the teapot is
[0.72, 0.66].
[spatial]: The teapot can place at [[0.61, 0.68],
[0.6, 0.68], [0.59, 0.67]].
[movement]: The robot can move to [[0.74,
0.55], [0.74, 0.57], [0.73, 0.58], …].

PourTea

Figure 7. More detailed examples of successful Chain-of-Affordance.

Table 4. Ablation study on visual affordance and textual affordance. Our experiments demonstrate that both affordance are important
for VLA.

LIBERO-Spatial LIBERO-Object LIBERO-Goal LIBERO-Long Average
Method / Task Success Rate (↑) Success Rate (↑) Success Rate (↑) Success Rate (↑) Success Rate (↑)

CoA-VLA 85.3± 0.9% 93.1± 1.0% 85.8± 0.9% 55.0± 1.2% 79.8± 0.5%
w/o visual affordance 84.3± 0.5% 91.5± 0.7% 83.9± 1.0% 54.6± 1.2% 78.6± 0.9%
w/o textual affordance 81.6± 0.7% 89.8± 0.9% 80.1± 1.0% 52.5± 0.9% 76.0± 0.9%

erated using our proposed pipeline for data in LIBERO. In
Table 2, we directly cite the results of Diffusion Policy,
Octo, and OpenVLA from OpenVLA’s paper. Therefore,
to ensure all methods are evaluated fairly, we evaluated our

methods across 500 trials for each task suite, and the re-
ported performance is the average success rate over three
random seeds. We use the same test data as in OpenVLA.
For the baseline ScaleDP, except for using all camera views,



Table 5. Ablation study on dynamic affordance selection. Removing dynamic affordance selection causes introduction of redundant
affordance into the learning process, which cause the model to perform even worse than the baseline without it.

LIBERO-Spatial LIBERO-Object LIBERO-Goal LIBERO-Long Average Inference
Method / Task Success Rate (↑) Success Rate (↑) Success Rate (↑) Success Rate (↑) Success Rate (↑) Speed

CoA-VLA 85.3± 0.9% 93.1± 1.0% 85.8± 0.9% 55.0± 1.2% 79.8± 0.5% 6Hz
- dynamic affordance selection 85.1± 0.9% 92.4± 1.0% 85.2± 1.0% 55.2± 1.1% 79.5± 1.0% 1Hz

Method \ Object Pose

OpenVLA
DiffusionVLA
CoA-VLA

Figure 8. Generalization on object pose. CoA can pick up ob-
jects with unseen poses, benefiting from grasp affordance.

all other implementations kept the same.

7. More Experiments
7.1. Ablation Study on Visual-Textual Affordance
Our primary contribution lies in the introduction of tex-
tual affordances and visual affordances, paired with a novel
visual-textual co-injection module designed to synergisti-
cally integrate these modalities into policy learning. To val-
idate their individual and combined efficacy, we conduct a
systematic ablation study (Table 4) on the LIBERO robotic
task benchmark. Our key finding is that both textual and vi-
sual affordances are critical to model performance. Remov-
ing either modality leads to significant degradation in task
success rates. While both modalities contribute uniquely,
textual affordances exhibit stronger influence on policy op-
timization. We hypothesize that this stems from language’s
inherent capacity to encode task-specific semantics (e.g.,
”pour-able” or ”graspable”), which provides clearer opti-
mization signals compared to visual features that require
implicit spatial grounding. These results underscore the
importance of our co-injection module, which dynamically
balances and fuses multimodal affordances to maximize
policy robustness in diverse environments.

7.2. Ablation Study on Dynamic Affordance Selec-
tion

Utilizing all affordances can be computationally expensive
and time-consuming. Therefore, we introduce a dynamic

affordance selection mechanism. This approach focuses on
selectively utilizing only the most relevant affordances at
each time step. As demonstrated in Table 5, our method
outperforms a baseline model that employs all affordances
indiscriminately. Surprisingly, using all affordances results
in a lower average success rate compared to our dynamic
selection approach. We hypothesize that the irrelevant af-
fordances introduce noise during the optimization process,
hindering the model’s learning ability. To further analyze
the impact of dynamic selection, we measured inference
speed on an Nvidia 3090 GPU. We averaged the running
time over all tasks, with each task measured across 5 tri-
als. Our results show that utilizing all affordances signif-
icantly impacts inference speed, causing the model to run
6 times slower than our proposed method. This highlights
the substantial efficiency gains achieved through dynamic
affordance selection

7.3. Generalization to Unseen Object Pose
We assessed CoA-VLA’s ability to generalize to previously
unseen object orientations, as illustrated in Figure 8. Our
evaluation focused on two objects: a hammer and a teapot.
In the training phase, both objects were consistently pre-
sented with their handles oriented vertically relative to the
robot. To test the model’s generalization capabilities, we
introduced novel poses that were absent from the training
data, challenging CoA-VLA to grasp these objects in unfa-
miliar orientations. We observed that CoA-VLA success-
fully managed most scenarios, demonstrating a remarkable
ability to adapt to new object poses even without explicit
training on these orientations. In contrast, OpenVLA suc-
ceeded only in the simplest cases, struggling with more
complex orientations. However, when the objects were po-
sitioned horizontally relative to the robot, all models, in-
cluding CoA-VLA, were unsuccessful in achieving a sta-
ble grasp. Despite this limitation, our grasp affordance
approach shows promising results, enabling CoA-VLA to
handle a wide range of novel object poses.


