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A. Implementation Details

A.l. Training Details

We follow the same training-test split as LoFTR [15]. The
network is trained for 30 epochs using the AdamW opti-
mizer with an initial learning rate of 1 x 10~ and a batch
size of 8. Training is conducted on 4 NVIDIA RTX 4090
GPUs and completes in approximately 22 hours.

A.2. Architecture

A.2.1. Local Feature Extraction

The local feature extraction is fleshed out by a modified
ResNet-18 [9] without the bottom-up part. Specifically,
we use a width of 64 and a stride of 1 for the stem and
widths of [64, 128, 256] and strides of 2 for the subse-
quent three stages. The output of the last stage at 1/8 image
resolution is processed by our dynamic covisibility-aware
Transformer (DCAT) to derive discriminative coarse-level
features. The second and third stages’ feature maps are at
1/2 and 1/4 image resolutions, respectively, which are pro-
gressively fused with transformed coarse-level features to
produce cross-view perceived fine-level ones for subsequent
match refinement.

A.2.2. Position Encoding

The spatial location context is essential for matching, typ-
ically modeled by absolute positional encoding (PE) [2].
However, in projective camera geometry, the position of
visual observations showcases equivariance concerning the
camera’s translation motion within the image plane [12].
This reveals that an encoding should exclusively consider
the relative but not the absolute position of keypoints. To
this end, we adopt Rotary position encoding (RoPE) [14] to
encode the spatial positional context between coarse-level
features. More concretely, for each coarse feature ¢, we first
decompose it into query and key vectors q; and k; via dif-
ferent linear transformations, then the attention score be-
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tween two coarse features ¢ and j is defined as follows:
aij = 4 R(x; — x)k; M

where x; and x; are the 2D image coordinates of q; and k;,
respectively, and R(-) € R%* is a block diagonal matrix
encoding the relative position between coarse features. We
partition the space into d/2 2D subspaces and rotate each of
them with an angle corresponding to the projection onto a
learnable basis b, € R2, following Fourier Features [10]:
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By doing so, the model can retrieve coarse feature j lo-
cated at a learned relative position from ¢, concentrating
more on interaction between features instead of their spe-
cific locations. Note that the encoding remains identical
across all self-attention layers, allowing it to be computed
once and then cached for reuse.

A.3. Supervision

Fine-Level Refinement Supervision. We supervise the
second stage with an epipolar geometry loss Lo, as de-
fined in Eq. (8) of the main paper, where & (?,3’ ,E) is the
Sampson distance [8] that measures the geometric error of
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the match (', j') w.rt. E and is defined as:
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Importantly, p; and p;, are the homogeneous coordinates

of two keypoints 7 and 3’ which form a final fine-level cor-
respondence, and V(K] denotes the k-th element of vector
V.



Table 1. Image matching challenge. mAA @10° of the pose error
is reported. The superscript * denotes our re-implemented version.

Method mAA@10° 1
LoFTR 78.3
MatchFormer 78.3
QuadTree 81.2
ASpanFormer 82.2
ELoFTR 81.3
CoMatch (ours) 82.3
DKM ¢ 82.6%/83.1

RoMa 85.5%/ 88.0

B. Experiments

B.1. Image Matching Challenge

To further substantiate CoMatch’s performance on relative
pose estimation, we evaluate it on Kaggle competition Im-
age Matching Challenge (IMC) 2022 benchmark [1], where
we estimate a fundamental matrix via RANSAC and de-
composing it into rotation and translation accordingly.

Dataset. IMC 2022 offers a test set comprising roughly
10,000 Google Street View images that exhibit significant
visual diversity. These images are captured from a wide
range of viewpoints, featuring varied aspect ratios, lighting
and weather conditions, and occlusions from both pedestri-
ans and vehicles. Notably, the evaluation dataset remains
undisclosed to participants, being securely hosted on Kag-
gle’s competition platform to ensure fair benchmarking.

Baselines. We compare CoMatch with LoFTR [15],
MatchFormer [18], QuadTree [17], ASpanFormer [3],
ELoFTR [19], DKM [5], and RoMa [6].

Evaluation Protocol. We calculate the mean average ac-
curacy (mAA) between the estimated fundamental matrix
and the hidden ground-truth counterpart. This assessment
considers pose errors through two criteria: rotation devi-
ation in degrees and translation discrepancy in meters. A
pose is classified as accurate if it meets both thresholds. In
IMC 2022, ten pairs of thresholds are considered: the rota-
tion threshold ranges from 1° to 10° while the translation
threshold spans 0.2 m to 5 m, with both thresholds follow-
ing uniform distributions across their respective ranges. Af-
ter that, the percentage of image pairs that meet every pair
of thresholds can be determined, and the average of results
over all threshold pairs is mAA.

Results. Quantitative results on IMC 2022 are reported in
Tab. 1, where CoMatch outperforms all semi-dense match-
ers. Compared to DKM and RoMa, CoMatch is much
faster (see Tab. 1 of the main paper) with comparable per-
formance, showing a better trade-off between accuracy and
efficiency.

B.2. Comparison with More Recent Semi-Dense
Baselines

To further highlight the superiority of our CoMatch,
we compare it with TopicFM+ [7] and PATS [13] on
MegaDepth [11], ScanNet [4], and Inloc [16]. Results
are presented in Tab. 2, where TopicFM+’s results on
MegaDepth differ from the original since we adjust its 0.2
RANSAC threshold to standard 0.5 for fair comparison. Re-
sults show CoMatch’s strong generalizability on ScanNet
and Inloc. On MegaDepth, CoMatch outperforms PATS by
being over 6 x faster with comparable accuracy.

B.3. Comparison with Dense Matchers DKM and
RoMa on Homography Estimation and Visual
Localization

We also compare CoMatch with DKM and RoMa on rele-
vant benchmarks (as shown in Tab. 3). Results demonstrate
CoMatch’s competitive performance against SOTA dense
matchers DKM and RoMa while being significantly faster
(see Tab. 1 of the main paper).

B.4. Potential of CoMatch to Surpass RoMa

To explore the potential of CoMatch, we conduct pose esti-
mation experiments on MegaDepth, as presented in Tab. 4.
By simply replacing RANSAC with LO-RANSAC (applied
to all methods), CoMatch outperforms DKM and achieves
performance comparable to RoMa, while being substan-
tially faster in both matching and pose estimation (see 3rd
row of Tab. 4). Furthermore, increasing the input resolution
from 1152x1152 to 1312x 1312 allows CoMatch* (see the
last row of Tab. 4) to slightly exceed RoMa across all thresh-
olds while still maintaining a significant speed advantage.
Additionally, visual localization experiments (see Tab. 3)
also demonstrate that CoMatch can surpass RoMa in down-
stream performance. These results collectively highlight
CoMatch’s strong potential to not only match but exceed
RoMa in both accuracy and efficiency.

B.5. How BSR Contributes to CoMatch

In the main paper, we have ablated our BSR module in
rows (e)-(g) of Tab. 4 (Sec. 4.5.1), which clearly verity its
positive contribution. To further explore its effectiveness,
we have retrained LoFTR with BSR. Tab. 5 reveals that
our BSR module leads to significant performance improve-
ments for LOFTR, owing to the enhanced matches with bi-
lateral subpixel accuracy. Moreover, Fig. | qualitatively and
quantitatively illustrates that our BSR module refines both
views’ keypoints that are spatially limited to the center of
coarse patches (see the top left of Fig. 1) to subpixel level
(see the right top of Fig. 1). This results in better keypoint
distributions to express structural information (see the bot-
tom of Fig. 1), benefiting keypoint location-sensitive pose
estimation.



Table 2. Comparison with TopicFM+ and PATS. The runtime to match an image pair on MegaDepth is reported.

Method MegaDepth ScanNet DUC1 DUC2 Time (ms) |
AUC@5°/10°/20° 1 (0.25m, 2°) / (0.5m, 5°) / (5.0m, 10°) +
TopicFM+  54.2/70.5/82.5 20.4/38.3/54.6 52.0/74.7/ 87.4 53.4/74.8/83.2 135.6
PATS 61.0 / 742 /83.0 20.9/40.1/ 57.2 55.6 /71.2/81.0 58.8/80.9/85.5 773.4
CoMatch  58.0/73.2/ 84.2 21.7 / 40.2 /56.7 545/ 753 /869 59.5 / 84.7 / 87.8 123.8

Table 3. Comparison with DKM and RoMa on homography estimation and visual localization.

HPatches Aachen Day-Night v1.1 InLoc
Method AUC@3/5/10px T  (0.25m,2°)/ (0.5m, 5°) / (5.0m, 10°) (0.25m, 2°) / (0.5m, 5°) / (5.0m, 10°) 1
Day Night puC1 pUC2
DKM 70.6 / 80.1 / 884  88.1 /953/ 985 723/ 9L1 /979  505/73.7/848 53.4/72.5174.0
RoMa 72.6 / 814 / 89.1 881 /956 /984  71.7/90.1/97.9 556 / 773 / 884 59.5 / 809 / 832
CoMatch (ours) ~ 684/782/86.8 894 /958 / 990 785 /916 /995 545 /753 /869 595 / 847 / 878

Table 4. Potential of CoMatch to surpass RoMa. The runtime
to match an image pair (Time;;) and estimate the relative pose
(Timeg) is reported. CoMatch* refers to CoMatch evaluated with
higher-resolution image pairs as input (i.e., 1312x1312).

Method MegaDepth Timey, (ms)| Timey (ms)
AUC@5° /10° /20° 1

DKM 69.07/80.72/88.73 587.9 5352

RoMa 70.00/ 81.36 / 89.10 759.2 5672

CoMatch (ours)  70.13 /81.34/88.98 1237 289.4

CoMatch* (ours)  70.25 / 81.46 / 89.12 175.4 366.5

B.6. Covisibility Quantitative Evaluation

We predict soft covisibility scores per token via Eq. (2)
instead of using hard masks to guide feature matching. To
quantitatively evaluate the classifier, we adopt a threshold of
0.5 to classify tokens as covisible or non-covisible and com-
pute its precision and recall on MegaDepth at 832 x 832 res-
olution. As reported in Tab. 6, the classifier achieves (88.7,
83.8) and (88.3, 84.3) for two views, respectively, showing
its reliability in guiding our CGTC and CAA modules to-
ward robust and compact context interaction.

B.7. Timing

In the main paper, we average the runtime across all image
pairs in the test dataset, i.e., MegaDepth [1 1], for efficiency
evaluation, with a warm-up of 50 pairs to ensure accurate
measurement. All comparative methods are implemented
on a single NVIDIA GeForce RTX 4090 with 32 cores of
Intel(R) Xeon(R) Platinum 8336C CPU.

In this supplementary material, we further present the
average runtime per procedure of CoMatch in Tab. 7 for a
more detailed efficiency analysis. We notice that a large
fraction of time is spent on the coarse-level match deter-
mination, where a dual-softmax operation is used to gen-
erate the assignment matrix but may substantially increase
the latency during the inference phase, particularly for high-
resolution cases (i.e., the large number of tokens). As the
bilateral subpixel-level refinement module comprises a pro-

Table 5. LoFTR with BSR.

Method MegaDepth
AUC@5°/10°/20° 1
LoFTR 52.8/69.2/81.2

+BSR 5504 00 /711 510, /82.8. 5 0,

Table 6. Quantitative evaluation of covisibility scores.

Metric  Source View Target View
Precision 88.7 88.3
Recall 83.8 84.3

gressive feature fusion layer and a two-stage correlation
layer, we also report their average runtime in row (d) of
Tab. 7.

B.8. Impact of Condensing Range

Adaptively condensing tokens in light of their covisibility
scores that are dynamically estimated within the network
lays the foundation for the subsequent covisibility-assisted
attention module. Thereby, we investigate the impact of dif-
ferent condensing ranges on the matching performance of
CoMatch, with results presented in Tab. 8, where s = 4
serves as the default setting. Notably, employing a smaller
condensing range, i.e., 2x2, increases the number of re-
duced tokens, resulting in a slight drop in accuracy but sig-
nificantly slower speed. This also underscores the suitabil-
ity of our chosen condensing range parameter.

B.9. More Qualitative Results

Fig. 2 illustrates the covisibility prediction of CoMatch
on four representative examples. Evidently, our approach
demonstrates the capability to precisely predict the covisi-
ble regions between image pairs, benefiting our covisibility-
guided token condensing and covisibility-assisted attention.
Fig. 3 presents the matching results on ScanNet [4]. Com-
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Figure 1. Keypoint locations from coarse and fine matches
that conform to the ground-truth essential matrix. The bot-
tom row overlays coarse and their corresponding keypoints
(shown separately in the top row) to better illustrate the distribu-
tional changes due to refinement.

Table 7. The average runtime per process required when
matching an image pair on MegaDepth at a resolution of
1152x1152.

Process Time (ms) |
(a) Local Feature Extraction 9.7

(b) Dynamic Covisibility Aware Transformer 19.4

(c¢) Coarse-Level Match Determination 62.0

(d) Bilateral Subpixel-Level Refinement 32.7(12.6/20.1)
Total 123.8

Table 8. Impact of condensing range on MegaDepth. AUC
of the pose error at multiple thresholds, together with the aver-
age runtime required to match an image pair at a resolution of
1152x 1152, is reported. The best results are in bold.

Condensing Range Pose Estimation AUC Time (ms) |
AUC@5°/10°/20°71
s =2 57.3/73.0/84.2 207.6
s=4 58.0/73.2/84.2 123.8

pared to LoFTR [15] and ELoFTR [19], our CoMatch es-
tablishes more reliable correspondences and recovers more
accurate relative camera poses.
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Figure 2. Visualization of covisibility prediction. We first bilinearly up-sample the covisibility score map to match the original image
resolution, and then multiply it with the input image.
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Figure 3. Visualization of matching results on ScanNet. A match is “~—" if its epipolar error is below 5 x 10™*, and “~—" otherwise.



