
A. Details of the Derivations

From Eq. (1) to Eq. (2). As in [90], we introduce a latent oracle O defined on the whole denoising chain x0:T , such that:

o(x0) = Epω(x1:T |x0) [O(x0:T)] . (8)

Then, starting from Eq. (1), we have:

max
ω

EI→I,x0→pω(x0|I) [o(x0)]→ ωDKL [pω(x0|I)↑pref(x0|I)]

↓max
ω

EI→I,x0→pω(x0|I) [o(x0)]→ ωDKL [pω(x0:T |I)↑pref(x0:T |I)]

=max
ω

EI→I,x0:T→pω(x0:T |I) [O(x0:T)]→ ωDKL [pω(x0:T |I)↑pref(x0:T |I)]

=ωmax
ω

EI→I,x0:T→pω(x0:T |I)

[
logZ(I)→ log

pω(x0:T |I)
pref(x0:T |I) exp(O(x0:T)/ω)/Z(I)

]
,

(9)

where Z(I) =
∑

x0:T
pref(x0:T |I) exp(O(x0:T)/ω) is a normalizing factor independent of ε. Since

EI→I,x0:T→pω(x0:T |I)

[
log

pω(x0:T |I)
pref(x0:T |I) exp(O(x0:T)/ω)/Z(I)

]
= DKL [pω(x0:T |I)↑pref(x0:T |I) exp(O(x0:T)/ω)/Z(I)] ↓ 0

(10)
with equality if and only if the two distributions are identical, the optimal pεω(x0:T |I) of the right-hand side of Eq. (9) has a
unique closed-form solution:

p
ε
ω(x0:T |I) = pref(x0:T |I) exp(O(x0:T)/ω)/Z(I). (11)

Therefore,

O(x0:T) = ω logZ(I) + ω log
p
ε
ω(x0:T |I)

pref(x0:T |I)
(12)

for any I ↔ supp(I).
We can then obtain Eq. (2) by plugging Eq. (12) into Eq. (8).

From Eq. (4) to Eq. (5). Since sampling from pω(x1:T |x0, I) is intractable, we follow [90] and replace it with q(x1:T |x0):

LDRO :=minEI→I,x0→XI ,x1:T→q(x1:T |x0)

[
(1→ 2o(x0)) log

pω(x0:T |I)
pref(x0:T |I)

]

=minEI→I,x0→XI ,x1:T→q(x1:T |x0)

[
(1→ 2o(x0))

T∑

t=1

log
pω(xt↑1|xt, I)

pref(xt↑1|xt, I)

]

=minTEI→I,x0→XI ,t→U(0,T),xt→q(xt|x0),xt→1→q(xt→1|x0,xt)

[
(1→ 2o(x0)) log

pω(xt↑1|xt, I)

pref(xt↑1|xt, I)

]

=minTEI→I,x0→XI ,t→U(0,T),xt→q(xt|x0)

[
(1→ 2o(x0))

(

DKL [q(xt↑1|xt,x0)↑pω(xt↑1|xt, I)]→ DKL [q(xt↑1|xt,x0)↑pref(xt↑1|xt, I)]

)]
.

(13)

Recall that for diffusion models pω and pref, the distributions q(xt↑1|xt,x0), pω(xt↑1|xt, I) and pref(xt↑1|xt, I) are all
Gaussian. Therefore, the KL divergence on the right-hand side of Eq. (13) can be re-parameterized analytically using ωω.
After some algebra, and removing all terms independent of ε, this yields Eq. (5).

B. Additional Training Details

All hyperparameters are listed in Tab. 4. We did not extensively tune these parameters: the LoRA parameters and the ω used
in LDPO follow [43], and the rectified flow noise level t sampling uses the distribution from TRELLIS [101].

Loss formulation LDRO LDPO

Optimization

Optimizer AdamW AdamW
Learning rate 5→ 10→6 5→ 10→6

Learning rate warmup Linear
2, 000 iterations

Linear
2, 000 iterations

Weight decay 0.01 0.01
Effective batch size 48 48
Training iterations 4, 000 8, 000
Precision bf16 bf16

LoRA

Rank 64 64
ω 128 128
Dropout 0 0

Miscellaneous

Rectified flow t sampling LogitNorm(1, 1) LogitNorm(1, 1)
ε in LDPO — 500

Table 4. DSO training details and hyperparameter settings.

Method
Alarm clock Motorcycle

% Stable↑ Rot.↓ % Stable↑ Rot.↓

TRELLIS [101] 67.5 14.14↑ 44.4 46.53↑

TRELLIS + DSO 85.0 5.58↑ 58.1 36.75↑

Table 5. DSO enhances the model’s ability to generate assets that re-
main stable under gravity from in-the-wild images of stable objects.

C. Additional Evaluation Details

For evaluation, the 3D models are generated by TRELLIS [101] and DSO fine-tuned TRELLIS using the default setting: 12
sampling steps in stage 1 with classifier-free guidance 7.5 and 12 sampling steps in stage 2 with classifier-free guidance 3.
Under this setting, generating one model takes 10 seconds on average on an NVIDIA A100 GPU. By contrast, Atlas3D [7]
takes 2 hours to generate a model using SDS and PhysComp [21] takes on average 15 minutes to optimize one model output
by TRELLIS on our hardware.

We use MuJoCo [88] for rigid body simulation for evaluation. The 3D models are assumed to be rigid and uniform in
density. We run the simulation for 10 seconds, at which almost all objects have reached the steady state.

D. Additional Results

D.1. Additional Evaluation Results

To demonstrate that the enhanced physical soundness achieved through DSO is not limited to a specific simulation envi-
ronment, we report the evaluation results in Isaac Gym [53] and under perturbations in Tab. 6. For the evaluation under
perturbations, we choose 4 maximum perturbation angles εmax and perform 100 simulation runs with each εmax where the
generated 3D models are initially rotated by a random angle ε ↔ (→εmax, εmax), following Atlas3D [7]. We then report the
average stability rate of the 100 runs. In Tab. 6, TRELLIS post-trained with only MuJoCo feedback via DSO outperforms all
baselines under all simulation settings, showing that the improved physical soundness generalizes well to different simulation
environments.

Method
MuJoCo Isaac Gym

w/o perturbation ϑmax = 0.01 ϑmax = 0.02 ϑmax = 0.04 ϑmax = 0.08 w/o perturbation

Full evaluation set (65 objects)

TRELLIS [101] 85.1 84.8 84.2 82.5 77.2 97.3
Atlas3D [7] 69.4 70.3 70.2 66.3 61.8 88.7
TRELLIS + DSO (w/ LDPO) 95.1 94.8 94.1 92.6 88.0 99.3
TRELLIS + DSO (w/ LDRO) 99.0 98.8 98.6 97.2 93.7 99.6

Partial evaluation set (11 unstable objects)

TRELLIS [101] 54.5 54.0 53.8 48.5 41.5 93.9
TRELLIS + PhysComp [21] 80.3 76.9 76.1 72.6 67.7 83.9
TRELLIS + DSO (w/ LDPO) 82.6 82.0 80.7 77.5 67.5 98.5
TRELLIS + DSO (w/ LDRO) 95.5 95.4 95.0 93.9 85.4 100.0

Table 6. Results evaluated under different simulation settings.

TRELLIS

Ours

Figure 7. DSO fine-tuned TRELLIS (ours) is more likely to generate physically sound 3D objects when conditioned on real-world images
of challenging categories.

D.2. Additional Comparison with Post-Processing Baselines

In Tab. 7, we compare DSO with a naive post-processing baseline that cuts the mesh flat just above the lowest vertex,
following Atlas3D [7]. This method is less effective at stabilizing meshes and significantly degrades geometric quality, as
reflected in the higher Chamfer distance (Tab. 7).

Method
Enforcing flat at height z DSO

(Ours)z = 0.05 z = 0.1 z = 0.15 z = 0.2

% Stable 94.2 90.5 93.2 95.8 99.0
Chamfer Distance 0.0502 0.0537 0.0591 0.0662 0.0440

Table 7. Comparison with post-processing baselines.

D.3. Additional Results on In-the-Wild Images

To assess the generalization of DSO fine-tuned models in generating physically sound 3D objects from real-world images,
we curate a set of 30 CC-licensed images for each category: stable alarm clocks and motorcycles supported by kickstands.
We select these two categories because the base model, TRELLIS, struggles to generate physically stable versions of these
objects. The results are reported in Tab. 5, with randomly sampled examples visualized in Fig. 7. As is evident, DSO
enhances the model’s ability to generate assets that remain stable under gravity from in-the-wild images of stable objects.

E. Additional Discussions

A deeper analysis of DRO vs. DPO. We further analyze the similarities and differences between LDRO and LDPO. Both
losses are monotonic functions of o = ↑ωw → ωω(xw

t , t)↑22→↑ωw → ωref(xw
t , t)↑22→

(
↑ωl → ωω(xl

t, t)↑22 → ↑ωl → ωref(xl
t, t)↑22

)
.

In Fig. 8, we plot each loss (left) and its derivative with respect to o (right, log-scale). A key difference is that dLDRO
do is

constant, while dLDPO
do decays exponentially as o decreases. As a result, o tends to plateau during optimization of LDPO. This

leads to faster convergence with LDRO, although extended training may harm performance.

Figure 8. Plots of LDRO and LDPO and their derivatives.

Scaling behaviors when optimizing LDRO. In Sec. 4.5, we analyzed how DSO scales when optimizing LDPO. Here, we
present the corresponding scaling behavior for LDRO. As shown in Tab. 8, performance peaks at 4, 000 training steps, after
which the geometry quality noticeably degrades—consistent with our earlier analysis. Scaling with training data follows a
similar trend to that observed for LDPO in Fig. 6b.

Training steps 2000 3000 4000 5000

% Stable 91.5 96.9 99.0 98.7
Chamfer D. 0.0473 0.0464 0.0440 0.0853

Table 8. Scaling behavior with training compute of LDRO.

F. Limitations and Future Work

DSO’s self-improving scheme relies on the base model generating at least some positive samples, and hence may be less
effective for base models where such samples are rare. DSO opens up new possibilities for integrating physical constraints
into generative models, enhancing their applicability in real-world scenarios where adherence to such constraints is crucial.

