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Figure 1. T-SNE visualization of feature distributions of diffusion
models. Here, Floor and Dream are fine-tuned from SD15. As
shown, compared to SD15, the feature distributions of its fine-
tuned versions (i.e., Floor and Dream) exhibit shifts to varying
degrees.

A. Proofs

A.1. Detailed Derivations of Eq.4 in the Main Paper

As discussed in Sec. 3.1, motivated by the classical Pro-
crustes problem, we define the distance function dis(·, ·) in
Eq. 2 of the main paper as the L2 distance. Thus, Eq. 2 can
be rewritten as:

min
M

1

N2

N∑
i=1

N∑
j=1

∥M(xi)− yj∥2. (1)

where xi, yj ∈ Rd are flattened feature representations. It
can be observed that Eq. (1) represents a summation of the
squared Euclidean norms of N2 column vectors. Recall that
the squared Frobenius norm of a matrix A is equivalent to
the sum of the squared Euclidean norms of its column vec-
tors, i.e.,

∥A∥2 =
∑
i=1

∥ai∥2, (2)

where ai denotes the i-th column vector of matrix A. With
this concept in mind, we can naturally stack these N2 col-
umn vectors into a matrix whose squared Frobenius norm is
equal to the summation in Eq. (1). To achieve this, we first
construct two sample matrices Xsample,Ysample ∈ Rd×N2

based on the summation structure in Eq. (1):

Xsample =

[x1, x1, . . . , x1︸ ︷︷ ︸
N

, x2, x2, . . . , x2︸ ︷︷ ︸
N

, . . . , xN , xN , . . . , xN︸ ︷︷ ︸
N

],

Ysample =

[y1, y2, . . . , yN︸ ︷︷ ︸
N

, y1, y2, . . . , yN︸ ︷︷ ︸
N

, . . . , y1, y2, . . . , yN︸ ︷︷ ︸
N

],

(3)
Then, we obtain the matrix A = M(Xsample) −Ysample. It
is easy to observe that its column vectors correspond one-
to-one with each term in the summation of Eq. (1). Conse-
quently, we successfully transform Eq. 2 in the main paper
into a form similar to the Procrustes problem, namely:

min
M

1

N2
∥M(Xsample)−Ysample∥2 , (4)

which can be further rewritten to Eq. 4 in the main paper by
expanding M :

1

N2
×

(
min

{Q,S,h}
∥QSXsample − h−Ysample∥2

)
. (5)

A.2. Detailed Proof of Theorem 1

Here, we provide a detailed proof of Theorem 1. For ease of
reading, we restate Theorem 1 from the main paper below.

Theorem 1. The optimization problem in Eq. 4 of the
main paper, min

{Q,S,h}
∥QSXsample − h−Ysample∥2, can

be rewritten into the following form with h removed:

min
{Q,S}

∥∥QSX′
sample −Y′

sample

∥∥2 , (6)

where X′
sample and Y′

sample are two new matrices respec-
tively derived from Xsample and Ysample.

Proof. We begin by rewriting the norm term in Eq. 4 of the
main paper as

∥B− h∥2 , (7)

where B = QSXsample −Ysample. Clearly, the optimal
translation h∗ that minimizes this norm term is given by
h∗ = B1

N2 (N2 is the number of column vectors of B ),
which represents the row-wise mean of B.

Applying this optimal translation to the elements of B is
algebraically equivalent to removing the row means from
Xsample and Ysample separately. This operation is ex-



pressed as:

B− h∗ =B− B1

N2
= B

(
I− 11⊤

N2

)
= BN

=QSXsampleN−YsampleN

(8)

where N = I− 11⊤
N2 is the centering matrix. With this nota-

tion, we observe that QS(XsampleN) = (QSXsample)N,
which shows that the result is the same whether we center
Xsample before applying the transformation QS or center
the transformed QSXsample. Thus, we choose to center
Xsample and Ysample prior to transformation, eliminating
the need to explicitly account for the translation operator
h.

A.3. Detailed Proof of Theorem 2
Here, we provide a detailed proof of Theorem 2. For ease of
reading, we restate Theorem 2 from the main paper below.

Theorem 2. The following optimization problem, when op-
timized over S, has a practically derivable closed-form so-
lution.

min
S

∥∥QSX′
sample −Y′

sample

∥∥2 . (9)

Proof. We aim to minimize the objective function∥∥∥QSX′
sample −Y′

sample

∥∥∥ with respect to the diagonal
matrix S, while keeping Q fixed. The Frobenius norm can
be expanded as:

∥QSX′
sample −Y′

sample∥ =
trace

(
(QSX′

sample −Y′
sample)

⊤(QSX′
sample −Y′

sample)
)
.

(10)
Ignoring constant terms, the objective function simplifies
to:

f(S) = trace(S⊤Q⊤QSX′
sampleX

′
sample

⊤−

2Y′
sample

⊤
QSX′

sample).
(11)

To find the optimal S, we take the derivative of f(S) with
respect to the diagonal S and set it to zero. We then arrive
at the matrix equation:

diag
(
Q⊤QS∗X′

sampleX
′
sample

⊤
)
=

diag
(
X′

sampleY
′
sample

⊤
Q
)
.

(12)

Reminding that S is a diagonal matrix, we can rewrite the
above equation to formulate a linear function as[(

Q⊤Q
)
◦
(
X′

sampleX
′
sample

⊤
)]

s∗ =

diag(X′
sampleY

′
sample

⊤
Q)

(13)

where s∗ = diag(S∗) is the vector form of the diagonal
matrix S∗. The solution s∗ of the linear function follows di-
rectly from the inverse of the symmetric Hadamard product
appearing on the left-hand side.

B. Algorithms (Pseudo-Codes)

Alternating Algorithm to Solve the Optimization Prob-
lem in Eq. 4 of the Main Paper. We provide a pseudo-
code of our alternating algorithm in Algorithm 1 to solve
the optimization problem in Eq. 4 of the main paper,
min

{Q,S,h}
∥QSXsample − h−Ysample∥2.

Algorithm 1 Alternating Algorithm for Solving the Opti-
mization Problem In Eq. 4 of the Main Paper

Require: Two sample matrices Xsample and Ysample,
initial values for Q,S (e.g., Q,S = I), convergence
threshold ϵ = 1 × 10−4, and maximum iterations
Tmax = 1000

Ensure: Optimal values for Q∗, S∗

1: Row-wise center Xsample and Ysample to obtain
X′

sample and Y′
sample. The optimization problem be-

comes:
min
Q,S

∥∥QSX′
sample −Y′

sample

∥∥2
2: Compute initial value V0 =

∥∥∥QSX′
sample −Y′

sample

∥∥∥2
3: Set iteration counter i = 0
4: while not converged and i < Tmax do
5: Fix S and solve the minimization problem:

min
Q

∥∥QSX′
sample −Y′

sample

∥∥2
6: Obtain Q∗ using the closed-form solution in classi-

cal Procrustes problem
7: Fix Q and solve the minimization problem:

min
S

∥∥QSX′
sample −Y′

sample

∥∥2
8: Obtain S∗ using the solution in Theorem 2

9: Update V =
∥∥∥QSX′

sample −Y′
sample

∥∥∥2
10: if V0 − V < ϵ then
11: Exit the loop
12: else
13: Set V0 = V
14: end if
15: Increment i = i+ 1
16: end while
17: return Q∗,S∗

Dynamic Programming-based Fingerprint Comparison.
We provide a pseudo-code of our dynamic programming al-
gorithm in Algorithm 2.



Algorithm 2 Dynamic Programming-based Fingerprint
Comparison

Require: Two fingerprint sequences F1:Ts
=

{F (·|z, ts)}Ts
ts=1 and F1:Tv

= {F (·|z, tv)}Tv
tv=1

Ensure: The minimum total step-wise distance C(Ts, Tv)
and the optimal step-wise alignment plan P

1: Initialize C as an (Ts + 1) × (Tv + 1) matrix with
C(0, tv) =∞ and C(ts, 0) =∞ for all ts, tv > 0

2: Set C(0, 0) = 0
3: for ts = 1 to Ts do
4: for tv = 1 to Tv do
5: Compute local distance: d(ts, tv) =

dstep(F (·|z, ts), F (·|z, tv))
6: Update total distance: C(ts, tv) = d(ts, tv) +

min{C(ts − 1, tv),C(ts, tv − 1),C(ts − 1, tv − 1)}
7: end for
8: end for
9: Backtracking:

10: Initialize empty path P = []
11: Set (ts, tv)← (Ts, Tv)
12: while ts > 0 and tv > 0 do
13: Append (ts, tv) to P
14: Find previous step: (t′s, t

′
v) = argmin{C(ts −

1, tv),C(ts, tv − 1),C(ts − 1, tv − 1)}
15: Update (ts, tv)← (t′s, t

′
v)

16: end while
17: Reverse path P
18: return C(Ts, Tv), P

C. More Details about Experiment Settings

C.1. More Implementation Details
As shown in Eq. 4 of the main paper, we use N = 20 differ-
ent seeds to collect suspect and victim diffusion models’ re-
sponses ({xi}Ni=1 and {yj}Ni=1) on each input text prompt to
construct the sample matrices Xsample and Ysample (de-
tails are provided in Appendix A.1). Here, xi and yj rep-
resent the flattened output features from the noise sched-
ulers of the diffusion models. Noticing that the feature di-
mensionality of suspect and victim diffusion models may
be different, we thus employ Principal Component Analysis
(PCA) to map these flattened features into the same dimen-
sion d = 20. In addition, we set a threshold of ϵ = 10−4

to terminate the alternating algorithm (as outlined in Algo-
rithm 1) and a maximum iteration limit of Tmax = 1000 to
ensure the algorithm exits.

Moreover, to compare our DiffIP with external-
watermark-based methods, we use DiffIP to compute the
representation similarity between diffusion models on each
input text prompt, and evaluate whether suspect diffusion
models are derived from the protected diffusion model us-
ing a similarity threshold. The similarity threshold is de-

termined by empirically controlling the false positive rate
(FPR) below 10−6 following [9, 10], after which the true
positive rate (TPR) is computed.

C.2. Details of Selected Suspect Models
Fine-tuning Models. Fine-tuning diffusion models is a
common practice among both legitimate users and attack-
ers. For SD15, we select its fine-tuned versions from
Hugging Face [8], including EarthnDusk [7], DreamShaper
[12], FloorPlanLoRA [15], and AnyLoRA [14] as suspect
models, abbreviated as Earth, Dream, Floor, and Any, re-
spectively. Similarly, for FLUX, we select its fine-tuned
versions, including AestheticAnime [5], LoRA-Cinematic-
Octane [1], Turbo-Alpha [2], and AWPortrait-FL [17], as
suspect models, abbreviated as Aes, Octane, Alpha, and
Portrait, respectively.
Pruned Models. Pruning is a widely used technique for
model compression in edge applications [4] and can also
serve as an effective method for intentional model cam-
ouflage. For SD15, we apply a recent structural pruning
method [11] to obtain a variant model, denoted as SD15-
Prun. For FLUX, we follow [18] to obtain its pruned ver-
sion as a suspect model, abbreviated as FLUX-Prun.
Dimension Permutation and Scaling Transformation.
Attackers may employ dimension permutation or column-
wise scaling to substantially modify parameters of the vic-
tim model and for evading fingerprint detection. To eval-
uate the robustness of DiffIP, following [19, 20], we apply
column-wise permutation and scaling to SD15 and FLUX,
producing two variant models for each: SD15-perm and
SD15-scale for SD15, and FLUX-perm and FLUX-scale for
FLUX, which serve as their respective suspect models.
Unrelated Models. For SD15, we select a series of
independently developed models as its unrelated mod-
els, including FLUX-dev1 [3], AAM XL AnimeMix [13],
dreamshaper-xl-lightning [16], and DeepFloyd [6], ab-
breviated as FLUX, AnimeMix, Lightning, and Floyd.
For FLUX, we use AnyLoRA [14], DreamShaper [12],
dreamshaper-xl-lightning [16], and DeepFloyd [6], abbre-
viated as Any, Dream, Lightning, and Floyd.

D. More Ablation Studies

D.1. Impact of the Number of Sampling

Derived Models ↑ Unrelated Models ↓
Method Dream Any FLUX Lightning

N=1 0.5287 0.7814 0.0074 0.0315
N=5 0.6124 0.8311 0.0048 0.0534
N=10 0.7789 0.9290 0.0119 0.0104
N=20 0.8065 0.9613 0.0150 0.1006
N=30 0.8064 0.9597 0.0132 0.1003

Table 1. Evaluation on the sam-
pling number (N ).

In our main experiments,
we use N = 20 different
seeds to trigger the diffusion
models for each input text
prompt to perform sampling
from the stochastic distribu-
tion. Here, we also explore
the impact of using different sampling numbers N of neigh-
bor frames for temporal attention computation. As shown



in Tab. 1, the performance improves noticeably when N is
smaller than 20, and the improvement trend plateaus be-
yond this point. Based on this observation, we choose to set
N = 20 in our experiments to achieve good results while
maintaining efficiency.

D.2. Impact of the Representation Dimensions

Derived Models ↑ Unrelated Models ↓
Method Dream Any FLUX Lightning

d=10 0.7773 0.9476 0.0124 0.0596
d=15 0.7936 0.9598 0.0132 0.0750
d=20 0.8065 0.9613 0.0150 0.1006
d=30 0.8069 0.9620 0.0141 0.1004
d=40 0.8076 0.9627 0.0194 0.1026

Table 2. Evaluation on the repre-
sentation dimension (d) .

In our main experiments, we
use PCA as a pre-processing
operation to map represen-
tation dimensionality of sus-
pect and victim diffusion
models to d = 20 for finger-
print comparison. Here, we
also evaluate the impact of d. As shown in Tab. 2, the per-
formance improves noticeably when d is smaller than 20,
and the improvement tapers off later. We thus set d = 20 in
our main experiments.
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