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8. Experimental Setup

We follow the experimental setup of SRe2L [43]. The de-
tailed parameter settings are documented in the following
tables: CIFAR-10/100 in Table 5, Tiny-ImageNet in Table
6, and ImageNet-1K in Table 7.

Table 5. Hyper-parameter settings for CIFAR-10/100.

Parameter Value

#Iteration 1000
Optimizer Adam with {�1,�2} = {0.5, 0.9}

Learning Rate 0.25 using cosine decay
Regularization Iterations Last 500

� 50
�1, �2 0.2, 4.0

Table 6. Hyper-parameter settings for Tiny-ImageNet.

Parameter Value

#Iteration 2000
Optimizer Adam with {�1,�2} = {0.5, 0.9}

Learning Rate 0.25 using cosine decay
Regularization Iterations Last 1000

� 50
�1, �2 0.2, 4.0

Table 7. Hyper-parameter settings for ImageNet-1K.

Parameter Value

#Iteration 2000
Optimizer Adam with {�1,�2} = {0.5, 0.9}

Learning Rate 0.25 using cosine decay
Regularization Iterations Last 1000

� 1.0
�1, �2 0.01, 0.25

9. Theoretical Analysis: Covariance Regular-

ization for Dataset Distillation

Given a pre-trained model with layer-wise features f l(x),
our dataset distillation method enforces structural con-
straints on the covariance matrix of final-layer features for
synthetic samples s 2 S:

CovL

S,c
=

1

|Sc|
⇥
(fL(s)� µL

S,c
)(fL(s)� µL

S,c
)>

⇤
,

(10)

where µL

S,c
is the feature mean of the final layer. We pro-

pose the dual regularization objectives:
(1) Diagonal Maximization: Maximize variance of indi-

vidual dimensions

max Diag(CovL

S,c
). (11)

(2) Off-Diagonal Minimization: Decouple feature corre-
lations

min kCovL

S,c
� Diag(CovL

S,c
)k2

F
. (12)

These objectives collectively enhance feature expres-
siveness while reducing redundant correlations.

Theorem 1 (Gradient Stability Guarantee). Let h(s) =
WfL(s) + b be the linear classifier for downstream fine-

tuning. If the synthetic data covariance CovL

S,c
satisfies:

1. Var(fL

i
) � �2

min (8i)
2. |Cov(fL

i
,fL

j
)|  ✏ (8i 6= j)

then the gradient matrix rWL satisfies:

1. Lower bounded Frobenius norm: krWLkF � C�min

2. Upper bounded condition number: (rWL) 
�
2
max+(d�1)✏

�
2
min�(d�1)✏

Proof:

Step 1: Gradient Expression. For cross-entropy loss:

rWL = ES,c

⇥
(p� y)⌦ fL(s)

⇤
(13)

where p represents the prediction vector, and ⌦ denotes the
outer product.

Step 2: Variance Analysis. The Frobenius norm square
of the gradient matrix reflects the diversity of update direc-
tions. The Frobenius norm can be calculated as follows:

krWLk2
F
= Tr

�
E[(p� y)(p� y)>]E[fL(fL)>]

�
,

(14)
Assuming that the prediction error p � y is approximately
independent of the feature fL, then:

krWLk2
F
� �min(CovL

Sc
) · Ekp� yk2. (15)

According to the Gershgorin Circle Theorem, We can con-
clude that:

�min � �2
min � (d� 1)✏, (16)

where d is the dimension of the matrix, and ✏ is the max-
imum absolute value of the non-diagonal elements of the
covariance matrix. When ✏ is small enough, it satisfies
�min ⇡ �2

min.



Step 3: Condition Number Analysis. The condition
number of the covariance matrix is given by:

 =
�max

�min
 �2

max + (d� 1)✏

�2
min � (d� 1)✏

, (17)

When ✏ ! 0 and �2
min ⇡ �2

max, we obtain  ⇡ 1. A low
condition number ensures the optimization landscape re-
mains nearly isotropic, preventing gradient directions from
being dominated by a small number of feature axes.

Step 4: Information Entropy Association. For a diago-
nally dominant covariance matrix with eigenvalue distribu-
tion approximating independent Gaussians, the differential
entropy is:

H(fL) =
1

2
ln
⇥
(2⇡e)d det(CovS)

⇤
� 1

2
ln(2⇡e�2

i
)

(18)
The entropy

P
�2
i

is maximized under fixed trace if and
only if �i = �j . Our proposed constraints enhance en-
tropy by guaranteeing minimum variance across dimen-
sions, thereby strengthening feature representation.

10. Analysis of Computational Overhead

We report the runtime and GPU memory usage on
ImageNet-1K in Table 8. Compared to LPLD, our DEDA
reduces training time by 3.6 hours and GPU memory con-
sumption by 0.89 GB on a single A100 GPU, as it aligns
the mean and covariance of pooled features, whereas LPLD
operates on the unpooled high-dimensional features.

Table 8. Computational cost on Imagenet-1K with IPC=50.

Method Runtime Memory

LPLD 123s⇥1000 = 34.16h 2.79GB
Ours 110s⇥1000 = 30.56h 1.90GB

11. Feature Cosine Distance Calculation

As shown in Figure 5, we compute the average cosine dis-
tance between all distilled samples and their corresponding
class prototypes for the first 20 classes of CIFAR-100 un-
der IPC=50. Our method achieves a 0.0223 improvement
over baseline approaches. This quantitative gain demon-
strates that DEDA effectively enhances the semantic diver-
sity of distilled data, as reflected by increased intra-class
feature dispersion in the embedding space. This improve-
ment arises from the limitations of SRe2L, where aligning
all class-distilled data at the same BN layers restricts diver-
sity. By using Gaussian distribution matching and introduc-
ing covariance regularization in the last layer, we better pre-
serve feature diversity and explicitly increase the semantic
spread within each class.

Figure 5. Cosine distances between samples and class centers for
the first 20 Classes in CIFAR-100 distilled data (IPC=50).

12. Visualization of More Distilled Data

More visualization results of distilled data randomly sam-
pled from DEDA are shown in Figure 6 (CIFAR-10), Figure
7 (CIFAR-100), and Figure 8 (ImageNet-1K).



Figure 6. Visualization of distilled data generated by DEDA on CIFAR-10.

Figure 7. Visualization of distilled data generated by DEDA on CIFAR-100.



Figure 8. Visualization of distilled data generated by DEDA on ImageNet-1K.
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