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Supplementary Material

8. Experimental Setup

We follow the experimental setup of SRe2L [43]. The de-
tailed parameter settings are documented in the following
tables: CIFAR-10/100 in Table 5, Tiny-ImageNet in Table
6, and ImageNet-1K in Table 7.

Table 5. Hyper-parameter settings for CIFAR-10/100.

Parameter Value
#teration 1000
Optimizer Adam with {81, 82} = {0.5,0.9}

Learning Rate 0.25 using cosine decay

Regularization Iterations Last 500
¥ 50
A1, Az 0.2,4.0

Table 6. Hyper-parameter settings for Tiny-ImageNet.

Parameter Value
#teration 2000
Optimizer Adam with {1, 82} = {0.5,0.9}

Learning Rate 0.25 using cosine decay

Regularization Iterations Last 1000
0% 50
A1, Az 0.2,4.0

Table 7. Hyper-parameter settings for ImageNet-1K.

Parameter Value
#lteration 2000
Optimizer Adam with {3, 82} = {0.5,0.9}

Learning Rate 0.25 using cosine decay

Regularization Iterations Last 1000
v 1.0
A1, A2 0.01, 0.25

9. Theoretical Analysis: Covariance Regular-
ization for Dataset Distillation

Given a pre-trained model with layer-wise features f'(x),
our dataset distillation method enforces structural con-
straints on the covariance matrix of final-layer features for
synthetic samples s € S:
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where ,uéc is the feature mean of the final layer. We pro-
pose the dual regularization objectives:

(1) Diagonal Maximization: Maximize variance of indi-
vidual dimensions

max Diag(Covéc). (11)

(2) Off-Diagonal Minimization: Decouple feature corre-
lations

min HCovéc - Diag(C’ové,C)HQF. (12)

These objectives collectively enhance feature expres-
siveness while reducing redundant correlations.

Theorem 1 (Gradient Stability Guarantee). Let h(s) =
W fL(s) + b be the linear classifier for downstream fine-
tuning. If the synthetic data covariance C ové . satisfies:

1. Var(fF) > o2, (Vi)
2 [Con(FE FE < € (i £ )

then the gradient matrix Vv L satisfies:

1. Lower bounded Frobenius norm: |Vw L||r > Comin

2. Upper bounded condition number: k(VwL) <
cffnax—s—(d—l)e
o2. —(d—1)e

min

Proof:
Step 1: Gradient Expression. For cross-entropy loss:

VwL=Es.[(p—y)® f=(s)] (13)

where p represents the prediction vector, and ® denotes the
outer product.

Step 2: Variance Analysis. The Frobenius norm square
of the gradient matrix reflects the diversity of update direc-
tions. The Frobenius norm can be calculated as follows:

IVwLl% =Tr (Ellp —y)(p—9) "IEF(F) '),
(14)
Assuming that the prediction error p — y is approximately
independent of the feature £, then:

IVw L] > Auin(Covk ) -Ellp —yl>. ()

According to the Gershgorin Circle Theorem, We can con-
clude that:
Amin > 0in — (d — 1)e, (16)

where d is the dimension of the matrix, and € is the max-
imum absolute value of the non-diagonal elements of the
covariance matrix. When ¢ is small enough, it satisfies
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Step 3: Condition Number Analysis. The condition
number of the covariance matrix is given by:

Amax _ O2ax +(d—1)e
— < max 17
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When ¢ — 0 and 02, =~ o2, ., we obtain k ~ 1. A low
condition number ensures the optimization landscape re-
mains nearly isotropic, preventing gradient directions from
being dominated by a small number of feature axes.

Step 4: Information Entropy Association. For a diago-
nally dominant covariance matrix with eigenvalue distribu-
tion approximating independent Gaussians, the differential

entropy is:

In(27es?)

(18)
The entropy Y o2 is maximized under fixed trace if and
only if o; = o;. Our proposed constraints enhance en-
tropy by guaranteeing minimum variance across dimen-
sions, thereby strengthening feature representation.

H(f*) = %hl [(2me)? det(Covs)] > %

10. Analysis of Computational Overhead

We report the runtime and GPU memory usage on
ImageNet-1K in Table 8. Compared to LPLD, our DEDA
reduces training time by 3.6 hours and GPU memory con-
sumption by 0.89 GB on a single A100 GPU, as it aligns
the mean and covariance of pooled features, whereas LPLD
operates on the unpooled high-dimensional features.

Table 8. Computational cost on Imagenet-1K with IPC=50.

Method | Runtime

LPLD | 123sx1000=34.16h 2.79GB
Ours 110sx1000 = 30.56h  1.90GB

Memory

11. Feature Cosine Distance Calculation

As shown in Figure 5, we compute the average cosine dis-
tance between all distilled samples and their corresponding
class prototypes for the first 20 classes of CIFAR-100 un-
der IPC=50. Our method achieves a 0.0223 improvement
over baseline approaches. This quantitative gain demon-
strates that DEDA effectively enhances the semantic diver-
sity of distilled data, as reflected by increased intra-class
feature dispersion in the embedding space. This improve-
ment arises from the limitations of SRe2L, where aligning
all class-distilled data at the same BN layers restricts diver-
sity. By using Gaussian distribution matching and introduc-
ing covariance regularization in the last layer, we better pre-
serve feature diversity and explicitly increase the semantic
spread within each class.
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Figure 5. Cosine distances between samples and class centers for
the first 20 Classes in CIFAR-100 distilled data (IPC=50).

12. Visualization of More Distilled Data

More visualization results of distilled data randomly sam-
pled from DEDA are shown in Figure 6 (CIFAR-10), Figure
7 (CIFAR-100), and Figure 8 (ImageNet-1K).
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Figure 6. Visualization of distilled data generated by DEDA on CIFAR-10.
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Figure 7. Visualization of distilled data generated by DEDA on CIFAR-100.



Figure 8. Visualization of distilled data generated by DEDA on ImageNet-1K.
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