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6. Implementation Details

6.1. Training Details
We adopt a multi-step training strategy to train our EDM
model on the MegaDepth dataset for a total of 30 epochs.
The training begins with an initial learning rate of 2e-3,
which undergoes a linear warmup phase lasting 3 epochs.
Following this, the learning rate is reduced by half every 4
epochs, starting from the eighth epoch. The learning rate
curve is depicted in Fig. 6.

Additionally, the supervision of fine matching relies on
the predictions derived from coarse matching. However,
in the early training stages, the accuracy of these coarse
matching predictions may be unsatisfactory. In order to
avoid distributed data parallel deadlocks and enhance the
supervision of fine matching, we pad the training samples
with an additional 32 ground truth coarse matches for those
with inadequate coarse matching predictions.

7. More Experiments

7.1. CNN Backbone
We utilize a simple variant of ResNet18 [21] as our back-
bone, which achieves a minimum resolution of 1

32 . To in-
vestigate the impact of various channel configurations, we
conducted experiments on the MegaDepth dataset, as shown
in Tab. 8. The final channel configuration we selected,
[32, 64, 128, 256, 256], offers an optimal balance between
efficiency and performance.

7.2. Fine Matching Selection
As presented in Eq. (7), during the training process, on the
one hand, it is desirable for the fine-level loss function Lf

to constrain the value of σ in term log σ to be as small as
possible. On the other hand, in term logQϕ (x̂), when the
distance between the predicted mean µ and the ground truth
mean µgt is large, the standard deviation σ of the predict
distribution tends to increase in order to mitigate the overall
loss. As demonstrated in Fig. 7, the matches that exhibit
higher confidence Pf (indicated by a smaller σ) are fre-
quently found in image regions that contain abundant local
details. This observation suggests that the model leverages
these detailed areas to make more precise and confident pre-
dictions.

7.3. SCC Bins
The Soft Coordinate Classification (SCC) bins number N
in the Axis-Based Regression Head (ABRHead) is set to 16

Figure 6. Learning rate curve over iterations.

backbone channels Pose Estimation AUC Time (ms)
@5◦ @10◦ @20◦

[16, 32, 64, 128, 256] 55.9 71.8 83.1 77.6
[32, 64, 128, 128, 256] 57.3 73.0 84.0 84.2
[32, 64, 128, 256, 256] 57.5 73.2 84.2 86.0
[32, 64, 128, 256, 512] 57.8 73.1 84.0 96.0
[64, 128, 256, 256, 256] 58.0 73.5 84.3 109.3

Table 8. The results of varying backbone channel numbers, from
1
2

to 1
32

scale, on the MegaDepth dataset.

Figure 7. Impact of θf on fine-level matching filtering. Matches in
areas with obvious details tend to have smaller σ, indicating higher
confidence in these results.

in our EDM. Considering the X-axis as an illustrative ex-
ample, during the fine-level matching, each 8×8 grid along
the X-axis is divided into N bins, so each pixel within this
grid is mapped to N

8 bins. The Fig. 8 demonstrates a trend in
matching accuracy as N varies. Initially, as N increases, the
accuracy of matching improves, benefiting from the finer
segmentation of pixels into bins. However, as N continues
to grow, the complexity of the learning task also increases,
leading to a gradual decline in matching accuracy. De-
tailed experimental results supporting this observation are
provided in Tab. 9. Additionally, the differences in network
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Figure 8. The impact of N on matching accuracy.

N
Pose Estimation AUC

@5◦ @10◦ @20◦

2 56.60 72.34 83.56
4 56.64 72.81 83.89
8 57.09 72.75 83.75
16 57.53 73.21 84.20
32 57.48 73.02 84.19
64 56.92 72.56 83.60

Table 9. The results of different N on the MegaDepth dataset.

Platform Time (ms)

PyTorch 16.74
TensorRT 6.72

Table 10. Comparison of inference time on different platforms.
The running times for an image pair with 640×480 resolution are
measured on a single NVIDIA 3090 GPU.

parameters caused by variation N are relatively small, ren-
dering the comparison of efficiency between different set-
tings unnecessary, as they exhibit similar performance in
terms of computational cost.

7.4. TensorRT Runtime

To further demonstrate the potential of our method in indus-
trial applications, we deployed the EDM with float32 preci-
sion based on ONNX Runtime with TensorRT engine, and
compared its runtime with that of the native PyTorch model.
The inference times for the same image pair on the identi-
cal hardware are presented in Tab. 10. With the acceler-
ation provided by the TensorRT platform, our deployment-
friendly model can achieve a higher efficiency. Besides, due
to the sensitivity of feature matching tasks to precision, we
do not recommend reducing the numerical precision of a
well-trained model.

Batch Size 1 2 4 8 16 32

Runtime (ms) 16.7 20.7 37.4 70.1 136.5 270.8

Table 11. Comparison of inference time on different batch size.

Method Parameters(M) FLOPs(G) Memory(MB) Runtime(ms) AUC@5◦

RoMa [16] 111.3 2586.3 2791.1 312.9 28.9

SP [11] + LG [34] 8.9 290.5 646.1 29.2 14.8

LoFTR [60] 11.6 783.6 1029.6 71.8 16.9
ELoFTR [66] 15.1 420.9 985.3 39.0 19.2
EDM (ours) 10.2 72.6 493.0 16.7 19.8

Table 12. More Efficiency Comparisons on ScanNet dataset.

Method Pose Estimation AUC (LO-RANSAC) Time (ms)
AUC@5◦ AUC@10◦ AUC@20◦

LoFTR [60] 62.1 75.5 84.9 134.8
ELoFTR [66] 63.7 77.0 86.4 82.5
JamMa [37] 64.1 77.4 86.5 84.3
Ours 64.7 77.8 86.8 38.5

Table 13. Results of Relative Pose Estimation on MegaDepth
Dataset following JamMa’s setting.

7.5. Batch Inference
Our design prioritizes efficiency and deployment flexibil-
ity. Our method enables data to be grouped into mini-
batches for batch inference, thereby reducing average com-
putational resource consumption overall. As shown in
Tab. 11, inference latency measurements across batch sizes
are benchmarked on a single NVIDIA 3090 GPU with
640×480 resolution.

7.6. Other Efficiency Comparisons
More efficiency comparisons in as Tab. 12 shown, the re-
sults further validate the effectiveness of our method.

7.7. Additional Results on other RANSAC setting
Recent semi-dense method JamMa [37] introducing Mamba
[20] to enhance matching performance and efficiency, em-
ploys more advanced poselib LO-RANSAC [28] for evalu-
ating relative pose estimation. We follow the same setting
as JamMa to further evaluate our method on the MegaDepth
dataset. Specifically, test images are resized and padded to
832×832, and the inlier pixel threshold of LO-RANSAC is
set to 0.5. The results are shown in Tab. 13, our method
outperforms all previous semi-dense methods in terms of
accuracy and efficiency.

8. More Visualizations
8.1. More Intuitive Explanation of Fine Matching
We further explained our bidirectional axis-based matching
and regression pipeline. Fig. 9 shows our thinking and im-
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Figure 9. Regression Paradigms.
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Figure 10. Explanation of Bidirectional Axis-Based Matching.

provement process regarding different regression paradigms
in the task of implicit matching coordinate estimation.

Furthermore, as shown in Fig. 10, we illustrate a cor-
rectly predicted coarse match from real inference data by
visualizing its corresponding 8×8 image patch with both
network predictions and ground truth overlaid. This pro-
vides a realistic and intuitive explanation to highlight the
differences from previous methods. It can be observed that
the bidirectional axis-based regression head operates as ex-
pected. Specifically, it can be summarized as follows: (a)
Distinguishing the implicit encoding of local coordinates
for axes reduces the optimization difficulty. (b) Inherent
bounding within the window eliminates regression outliers.
(c) Multimodal distribution facilitates the correction of im-
precise maximum response values. (d) In the two bidirec-
tional fine matching of a pair of coarse correspondences,
the one with lower standard deviation σ (higher confidence
score) typically has a smaller discrepancy with the ground
truth, indicating higher accuracy.

8.2. Failure Cases

As shown in Fig. 11, EDM’s failure cases typically occur
in scenarios with extreme scale and viewpoint variations or
textureless regions.

Figure 11. Failure Cases.

9. Future Work
Although we have made improvements to each step of the
detector-free matching pipeline, the efficiency improvement
of feature transformation is the least significant. Even
though the number of tokens has been significantly reduced,
the efficiency issue still persists due to the inherent char-
acteristics of the Transformer. In future work, we con-
sider experimenting and replacing some components in our
pipeline, including more efficient backbones and feature
transform mechanisms to further improve the accuracy and
speed.


