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Our appendix provides supplementary information to the
main paper, offering in-depth insights into our experimental
procedures, extended discussions, and detailed setup con-
figurations. It is organized into three main sections: (1)
Extended Discussion, which elaborates on the differences
between NoRA and existing work, acknowledges limitations,
and considers potential societal impacts; (2) More Detailed
Experiments, which presents additional results from our
motivation experiments and extended NLP tasks; and (3)
Experimental Setup and Hyperparameters, which outlines
the specific configurations, hardware, software, and hyperpa-
rameters used in our studies. This comprehensive appendix
aims to provide researchers with the necessary information
to understand and potentially reproduce our results.

A. More Discussions

A.1. Ethics Statement
This research focuses exclusively on developing efficient
techniques for Large Language Models (LLMs), utilizing
publicly available datasets and models. The study does not
directly address human ethics or privacy concerns. Instead,
it aims to enhance the computational efficiency and adapt-
ability of existing LLMs, which may indirectly contribute to
their broader accessibility and application.

A.2. Reproducibility
The authors affirm the solid reproducibility of their results
and provide specific code implementations in the appendix.
The main experiments represent average outcomes from
multiple repetitions, ensuring reliability and consistency. By
presenting detailed results for different initial seeds, the
researchers demonstrate the robustness and repeatability of
their method across various conditions, further solidifying
the reproducibility of their findings.

*Corresponding author. First three authors have equal contributions to
experiments.

A.3. Summary of Innovations

(1) The study introduces NoRA, a novel nested parameter-
efficient Low-Rank Adaptation (LoRA) design structure that
optimizes the initialization and fine-tuning strategies of pro-
jection matrices. (2) The researchers propose an activation-
aware Singular Value Decomposition (AwSVD) technique
that adjusts weight matrices based on activation distributions,
effectively managing outliers and accelerating model conver-
gence. (3) The work constructs a unified design space for
LoRA variants and develops comprehensive design guide-
lines, emphasizing the importance of specific design po-
sitions, serial structures, and the use of nested LoRA for
enhanced performance and efficiency.

A.4. More Discussions for Related Work

The immense scale of modern Large Models presents sig-
nificant challenges for their deployment and execution, ne-
cessitating the development of efficient compression and
optimization techniques. Research in this area broadly spans
model pruning, quantization, knowledge distillation, and
automated methods for discovering optimal configurations.
Model pruning aims to reduce model size by removing re-
dundant parameters. Recent efforts have focused on au-
tomating the discovery of optimal pruning strategies. For
instance, work has been done on discovering layer-wise
sparsity allocations [13] and adapting layer sparsity based
on activation correlation assessments [16]. Furthermore,
evolutionary approaches have been proposed to generate
symbolic pruning metrics from scratch, removing the need
for manual design [3]. Quantization reduces the numerical
precision of model weights, leading to smaller memory foot-
prints and faster inference. Advances in this area include the
development of structured binary LLMs that push beyond
the 1-bit barrier [5]. To automate the complex process of
mixed-precision quantization, methods have been developed
to evolve training-free proxies that find efficient quantization
strategies without fine-tuning [2]. For very large models,
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Figure 1. A subset of configurations within the unified design space (wa, wb).

such as Mixture-of-Experts (MoE), specialized compression
techniques are crucial. These include structured compres-
sion via Singular Value Decomposition (SVD) [17] and the
use of Delta Decompression to efficiently store and deploy
MoE-based LLMs [6]. Knowledge Distillation (KD) is a
popular compression paradigm where a smaller "student"
model is trained to mimic the behavior of a larger "teacher"
model. The field has explored various facets of this pro-
cess. Novel frameworks like Shadow Knowledge Distillation
have been introduced to bridge offline and online knowledge
transfer [9]. Other approaches have focused on teacher-
free distillation through self-regulated feature learning [8]
or improving representation matching between teacher and
student [22]. A significant trend is the automation of discov-
ering efficient architectures and compression schemes, often
using training-free, zero-cost proxies. This automation, a
subset of Neural Architecture Search (NAS), avoids the pro-
hibitive cost of repeatedly training large models. Researchers
have developed parametric zero-cost proxies for efficient
NAS [4] and methods for automatically discovering proxies
for both generative architecture search [14] and distillation-
aware search [19]. This principle has also been applied to
find efficient ViT architectures [21] and to discover optimal
attention patterns within them [15]. The automation extends
to the KD process itself. Methodologies have been created to
search for optimal student architectures [1] and to automate
the entire KD process using techniques like Monte Carlo
Tree Search [10]. Evolutionary algorithms have also been
employed to create universal knowledge distillers that work
for any teacher-student pair [12] and to search for optimal
KD strategies for specific tasks like object detection [11].

A.5. Performance Gains
As the first nested LoRA method utilizing activation-aware
SVD, NoRA demonstrates significant advantages in both
performance and efficiency. (1) The performance gains com-
pared to other LoRA variants are substantial, with NoRA
achieving an average score of 84.4% on the LLaMA-3 8B
model, surpassing LoRA’s 82.8%. (2) In visual few-shot
tasks, NoRA achieves the highest average accuracies of
80.9% (4 shots) and 86.1% (16 shots), outperforming ex-
isting methods. (3) The improvements in inference speed
and memory optimization are notable strengths of NoRA,
reducing the required parameters to as low as 4.1 million for
the LLaMA-3 8B model while enhancing performance.

A.6. Comparison to Other Methods
(1) While other LoRA variants like AdaLoRA, LoRA-FA,
VeRA, and LoRA-XS have made advancements in low-rank
adaptation, NoRA distinguishes itself by addressing key lim-
itations in existing approaches. The unified design space
and nested structure of NoRA offer unique advantages in
balancing parameter efficiency and task-specific adaptation.
Unlike methods that focus solely on rank adjustment or acti-
vation memory reduction, NoRA’s comprehensive approach
to optimization, including its AwSVD technique and nested
structure, provides a more holistic solution to the challenges
of fine-tuning large language models.

A.7. Societal Impacts
The development of NoRA has potential societal implica-
tions: (1) Democratization of AI: By reducing computational
requirements, NoRA could make fine-tuning large models



Table 1. Detailed results for 5 datasets with the ViT-B/16 as visual
backbone. Top-1 accuracy averaged over 3 random seeds is re-
ported. Highest value is highlighted in bold, and the second highest
is underlined.

Shots 4

(WA,WB) Food Pets DTD UCF Cars Average
Random, Random 85.94 93.24 64.07 79.25 73.61 79.22
UΣ,V 87.02 93.70 63.77 79.12 73.39 79.40
U,ΣV 86.69 93.59 64.89 79.75 74.65 79.91
U
√
Σ,

√
ΣV 86.81 93.92 64.18 79.28 73.78 79.59

more accessible to researchers and organizations with limited
resources. (2) Environmental Benefits: Increased efficiency
in model adaptation could lead to reduced energy consump-
tion and carbon footprint associated with AI research and
deployment.

B. More Detailed Experiments
B.1. Motivation Experiment Results
Our motivation experiments focused on comparing different
initialization strategies and architectural configurations. Key
findings include:
• Figure 1 illustrates a subset of the structures within our

unified design framework.
• SVD vs. Random Initialization: As shown in Table 1, SVD

consistently outperformed random initialization across all
tested datasets. For instance, in the Fine-tuning Vision-
Language Models task, the maximum difference in av-
erage accuracy between SVD initialization and random
initialization across the five datasets is 0.69 and 0.58 for
4-shot and 16-shot scenarios, respectively.

• AwSVD Performance: As shown in Figure 2, the
Activation-aware SVD (AwSVD) method further im-
proved upon standard SVD, showing about 10% reduction
in output errors.

• Architectural Configurations: As shown in Table 6, the
CLIP model with LoRA serial configuration outperforms
the parallel configuration on diverse datasets. The average
performance improvement is 2.5% and 2.55% for 4-shot
and 16-shot, respectively. Additionally, compared to the
adapter architecture, the LoRA serial configuration re-
duces the number of trainable parameters by 94%, leading
to a more efficient parameter utilization.

C. Theoretical Analysis
C.1. Training Stability: Decomposition Error

Bound (Theorem 1)
Theorem C.1 (Decomposition Error Bound). The spectral
norm error of NoRA’s approximation satisfies:

∥W −Woriginal∥2 ≤ σr+1 · κ(S),

Table 2. Detailed results for 5 datasets with the ViT-B/16 as visual
backbone. Top-1 accuracy averaged over 3 random seeds is re-
ported. Highest value is highlighted in bold, and the second highest
is underlined.

Shots 16

(WA,WB) Food Pets DTD UCF Cars Average
Random, Random 87.12 94.33 71.28 86.02 84.72 84.69
UΣ,V 87.60 94.49 72.70 86.12 85.46 85.27
U,ΣV 87.44 94.25 72.64 86.62 84.72 85.13
U
√
Σ,

√
ΣV 87.56 94.17 72.40 86.41 85.01 85.11

Table 3. Detailed results for 5 datasets with the ViT-B/16 as vi-
sual backbone. Top-1 accuracy averaged over 3 random seeds is
reported. Highest value is highlighted in bold, and the second
highest is underlined. #Param represents the number of trainable
parameters.

Shots 4

wa #Param Food Pets DTD UCF Cars Average
LoRA Serial 0.59M 87.02 93.65 66.61 79.73 74.10 80.22
LoRA parallel 0.38M 85.44 93.38 62.35 74.86 72.57 77.72
Adapter Serial 10.62M 86.21 88.36 63.53 77.35 73.64 77.82

Table 4. Detailed results for 5 datasets with the ViT-B/16 as vi-
sual backbone. Top-1 accuracy averaged over 3 random seeds is
reported. Highest value is highlighted in bold, and the second
highest is underlined. #Param represents the number of trainable
parameters.

Shots 16

wa #Param Food Pets DTD UCF Cars Average
LoRA Serial 0.59M 87.74 94.33 72.40 86.70 87.25 85.68
LoRA parallel 0.38M 86.30 94.36 70.57 85.09 79.31 83.13
Adapter Serial 10.62M 86.80 94.06 70.80 85.70 83.24 84.27

Table 5. Different calibration datasets with the ViT-B/16 as vi-
sual backbone. Top-1 accuracy averaged over 3 random seeds is
reported.

Calibration dataset Test dataset Test Accuracy

dtd ucf101 78.64
dtd stanford_cars 73.27
dtd dtd 64.83
dtd oxford_pets 93.73
dtd food101 86.42

food101 food101 86.42
food101 dtd 64.60
food101 stanford_cars 73.52
food101 oxford_pets 93.76
food101 ucf101 78.98

oxford_pets stanford_cars 73.50
oxford_pets dtd 64.83
oxford_pets food101 86.43
oxford_pets oxford_pets 93.87
oxford_pets ucf101 79.04

Table 6. Different calibration dataset sizes with the ViT-B/16 as
visual backbone. Top-1 accuracy averaged over 3 random seeds is
reported.

cal_batch_size oxford_pets food101 stanford_cars dtd ucf101

256 93.87 86.42 73.37 64.66 78.77
128 93.98 86.42 73.49 64.72 78.88
64 94.03 86.42 73.54 64.72 78.91
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Figure 2. Comparison of SVD decomposition errors in CLIP text-
encoder and vision-encoder across query projection, key projection,
and value projection.

where σr+1 is the (r + 1)-th singular value of Waw, and
κ(S) = ∥S∥2∥S−1∥2 is the condition number of the activa-
tion scaling matrix S.

Proof. Let Waw = UΣV⊤ be the activation-weighted
SVD. NoRA approximates Woriginal = WawS

−1 using
rank-r components:

W = UrΣrV
⊤
r S

−1.

The approximation error is:

∥W −Woriginal∥2 = ∥(UrΣrV
⊤
r −UΣV⊤)S−1∥2 (1)

= ∥(U⊥Σ⊥V
⊤
⊥)S

−1∥2 (truncated components)
(2)

≤ ∥U⊥Σ⊥V
⊤
⊥∥2 · ∥S−1∥2 (submultiplicativity)

(3)

= σr+1 · ∥S−1∥2. (4)

Using κ(S) = ∥S∥2∥S−1∥2, we obtain:

∥W −Woriginal∥2 ≤ σr+1 · κ(S).

Activation-weighted SVD prioritizes components with
higher activation magnitudes, accelerating σr+1 decay and
reducing κ(S), thereby stabilizing training. □

C.2. Convergence Acceleration: Gradient Norm
Preservation (Theorem 2)

Theorem C.2 (Gradient Norm Preservation). For NoRA’s
outer LoRA layer initialized with AwSVD, the gradient norm
satisfies:

∥g̃∥ ∝ s ·
(
∥UrU

⊤
r g∥+ ∥gVrV

⊤
r ∥

)
,

where Ur and Vr are top-r singular vectors from activation-
weighted SVD.

Proof. The equivalent gradient g̃t under LoRA decomposi-
tion W̃t = Winit + sBtAt is:

g̃t = s2
(
BtB

⊤
t gt + gtA

⊤
t At

)
.

1. Initialization with AwSVD:

Bt = Ur (orthonormal basis for column space), (5)

At = ΣrV
⊤
r S−1 (scaled row space basis). (6)

2. Projection Analysis:

BtB
⊤
t = UrU

⊤
r (projection onto column space), (7)

A⊤
t At = S−⊤VrΣ

2
rV

⊤
r S−1 (row space scaling). (8)

3. Gradient Norm Decomposition:

∥g̃t∥ = s2∥BtB
⊤
t gt + gtA

⊤
t At∥ (9)

≤ s2
(
∥UrU

⊤
r gt∥+ ∥gtS−⊤VrΣ

2
rV

⊤
r S−1∥

)
(10)

≤ s2
(
∥g∥Ur

∥+ σ2
max(Σr) · ∥gtS−1∥

)
. (11)

4. Simplification via AwSVD Properties: Since S is
diagonal and Σr contains dominant singular values:

∥gtS−1∥ ≈ ∥gtVrV
⊤
r ∥,

leading to:

∥g̃t∥ ∝ s ·
(
∥UrU

⊤
r gt∥+ ∥gtVrV

⊤
r ∥

)
.

The scaling factor s amplifies gradients along critical sub-
spaces, accelerating convergence. □

C.3. Adaptation Flexibility: Dual Modulation
(Proposition 3)

Proposition C.3 (Weight Decomposition Dynamics). Start-
ing from the weight decomposition W = ∥W∥c · W

∥W∥c
,

NoRA’s update satisfies:

∆W = (UrΣr)(B
′A′)(V⊤

r S
−1),

where the inner matrices B′A′ modulate both magnitude
(∆M ) and direction (∆D) of updates:

∆M = ∥B′A′∥F · ∥Σr∥F , ∆D = 1− cos(B′A′, Ir×r).

Proof. 1. Update Decomposition:

∆W = (UrΣr)︸ ︷︷ ︸
frozen outer

· (B′A′)︸ ︷︷ ︸
trainable inner

· (V⊤
r S

−1)︸ ︷︷ ︸
frozen outer

.

2. Magnitude Modulation:

∥∆W∥F = ∥B′A′∥F · ∥Σr∥F ,

where ∥B′A′∥F controls the update magnitude.
3. Direction Modulation:

∆D = 1− ⟨B′A′, Ir×r⟩
∥B′A′∥F · ∥Ir×r∥F

,

measuring alignment with identity matrix. This allows in-
dependent control of update direction while preserving pre-
trained structure. □



Table 7. GLUE Benchmark.

Method Trainable Parameters QNLI

Full FT 355M 94.7
LoRA 800K 94.8
NoRA 70K 94.6

C.4. Additional Experiment Results
Extended results for natural language processing tasks:
• Based on the data in the table, we compared the perfor-

mance of LoRA and NoRA methods on commonsense rea-
soning tasks using the LlaMA 7B model. Notably, NoRA
demonstrated strong performance across multiple tasks,
achieving an average score of 75.8%, which is slightly
higher than LoRA’s scores of 74.4% (r=16) and 75.3%
(r=32).

• Question Natural Language Inference: QNLI (Question
Natural Language Inference) is a task from the GLUE
(General Language Understanding Evaluation) benchmark.
Using the QNLI dataset, NoRA achieved an accuracy of
94.6%, compared to 94.8% for LoRA and 94.7% for full
fine-tuning, while reducing trainable parameters by 91%
compared to LoRA and by 99.8% compared to full fine-
tuning (see Table 7).
In addition, Figure 3 presents more visual comparisons

to show that our method can outperform the effects of LoRA
on the generation task.

D. Experimental Setup and Hyperparameters
D.1. Model Configurations
• CLIP ViT-B/16 vision encoder: 86.19 Million parameters,

12 layers, 768 hidden size
• CLIP ViT-B/16 text encoder: 63.43 Million parameters,

12 layers, 512 hidden size
• Mistral-7B: 7 billion parameters, 32 layers, 4096 hidden

size

D.2. Hardware and Software
• GPUs: 8 x NVIDIA V100S (32GB)
• Framework: PyTorch 1.10.0
• CUDA Version: 11.3

D.3. Hyperparameters
Instruction Tuning: We perform the instruction tuning
experiments on Mistral-7B-v0.1 [7] , Gemma-7B [20] and
LlaMA-3 8B models. We use a batch size of 128 and train for
2 epochs on 100k samples of the MetaMathQA dataset. Mod-
els are evaluated on the GSM8K and MATH datasets. The
learning rate is set to 7E-3 with the AdamW optimizer [18].
The warmup ratio is 0.02, and a cosine learning rate sched-
uler is used. The parameter α for NoRA modules is always

equal to the rank. In NoRA (0.92M), the Outer and Inner
LoRA ranks are 64 and 32, respectively. We used 8 × V100S
32GB GPUs for the finetuning

Fine-tuning of Vision-Language Models: Table 9 de-
tails our hyperparameter settings for CLIP ViT-B/16, which
remain consistent across all 5 datasets.

Common hyperparameters across experiments:
• Batch size: 32
• Learning rate: 1e-4 (AdamW optimizer)
• Weight decay: 0.01
• Warmup steps: 500
• Max steps: 20,000

Task-specific adjustments:
• GSM8K and Math: Increased max steps to 30,000
• Few-shot CLIP: Reduced batch size to 16, max steps to

5,000

D.4. Evaluation Metrics
• NLP tasks: Accuracy, F1 score
• Math reasoning: Pass@1 score
• Few-shot image classification: Top-1 accuracy
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