
EgoM2P: Egocentric Multimodal Multitask Pretraining

– Supplementary Material –

A. Implementation Details

A.1. Tokenizers

We tokenize spatiotemporal multimodalities into discrete
tokens. For RGB and depth video, we use the state-of-
the-art (SOTA) Cosmos tokenizer [3]. For gaze dynamics
and camera trajectory, we train modality-specific tokeniz-
ers based on vector-quantized autoencoder.

For the gaze data Xgaze 2 RT⇥2, we first apply a con-
volution with a kernel size of 2 to temporally downsam-
ple it while mapping the channel dimension from 2 to 768.
Then, we use 12 Transformer blocks (ViT-B) with self-
attention to encode the data. Following best practices, we
use cosine-sine similarity codebook with normalized codes.
During training, we update the codebook entries to make
sure all entries are used effectively. We track the exponen-
tial moving average of the codebook entry usage and re-
place under-utilized codes with the EMA dead code thresh-
old. Quantized discrete tokens are then fed into the de-
coder with 12 Transformer blocks (ViT-B). Due to the hard-
ware constraints, gaze data obtained from headsets, espe-
cially HoloLens [75], contains considerable invalid num-
bers. We choose not to discard these sequences, mask out
invalid numbers, and use them as input. While calculating
the reconstruction loss, we use masked L2 loss:

Lgaze =

P
N

i=1 mi(yi � ŷi)2P
N

i=1 mi

where yi is the ground truth, ŷi is the predicted value, and
mi is the binary mask indicating valid values (1 for valid, 0
for invalid). The denominator ensures normalization by the
number of valid elements. By leveraging the smoothness of
deep networks, invalid gaze could also be predicted.

For the camera trajectory data Xcam 2 RT⇥9, we select
the first two columns of the rotation matrix and the cam-
era translation and stack them together. The only difference
with the gaze tokenizer is the temporal convolution. This
convolution performs temporal downsampling with a factor
of 2 and maps the channel from 9 to 768. The training de-
tails are listed in Tab. A.1. “Batch size” refers to the number
of samples per GPU. The “Learning rate” is determined by
multiplying the “Base Learning rate” by the “Total batch
size” and then dividing by 256 following [28].

The codebook size is 64000 for video modalities, while
the gaze and camera modalities have a codebook size of
256. The number of parameters for gaze and camera tok-

Configuration Gaze Dyn. Camera Traj.

Codebook size 256
Temporal compression 2
Code latent dimension 32
EMA dead code threshold 2
Codebook EMA 0.99
l2-normalized codes [120] X
Codebook weight 1.0
Commitment weight � 1.0

Encoder architecture ViT-B
Decoder architecture ViT-B
Loss function Masked MSE MSE

Optimizer AdamW [63]
Opt. momentum �1,�2 = 0.9, 0.95
Weight decay 0.05
Base learning rate 5e-5 2.5e-5
Learning rate 1e-4 5e-5
Batch size 128
Total batch size 512
Max gradient norm 1
Learning rate sched. Cosine decay
Training epochs 200
Warmup epochs 5
Data type float32

Table A.1. Tokenizer training settings.

enizers is approximately 180 million. The camera trajectory
tokenizer trains in 1 day, while the gaze tokenizer takes 12
hours, both using 4 NVIDIA GH200 superchips, each with
an H100 GPU and 96GB of RAM.

A.2. Multimodal Token Sampling

First, we randomly sample a dataset from eight curated ego-
centric datasets with probability proportional to the num-
ber of samples they contain. Then, we sample tokens
from available multimodalities with a family of symmetric
Dirichlet distributions:

1. Sampling a Dirichlet Distribution: Let ↵1, ↵2, ↵3,
↵4 be the four concentration parameters of the Dirichlet dis-

tributions. We select ↵i with uniform probability:

↵1 = (0.01, 0.01, 0.01, 0.01),

↵2 = (0.1, 0.1, 0.1, 0.1),

↵3 = (1, 1, 1, 1),

↵4 = (10, 10, 10, 10).

If the dataset contains missing modalities, the selected con-
centration parameter vector ↵i is adjusted to include only
the parameters corresponding to the available modalities.

2. Sampling a Probability Vector: When ↵i is sam-
pled, we then sample a probability vector ✓ from the chosen
Dirichlet distribution:

✓ ⇠ Dirichlet(↵i).

Here, ✓ represents a probability distribution over available
modalities.

3. Sampling Tokens from the Modalities: Finally,
given ✓ = (✓1, ✓2, . . . , ✓n), the number of tokens for each
modality i is Ti = 2048⇥ ✓i. Within this cap, tokens from
each modality are sampled randomly. 2048 is the maximum
number of input and target tokens.

A.3. EgoM2P Pretraining Details

For the model architecture, we adapt the T5-Base model.
It has 12 Transformer blocks in both the encoder and de-
coder. The latent dimension is 768. The model uses 12
attention heads in its multi-head attention mechanism. For
each modality embedding layer, it maps each token in the
codebook to a 768-dimensional space. In Tab. A.2, we de-
tail the training hyperparameters. The model is trained with
distributed data parallel.

The total number of parameters of EgoM2P is approxi-
mately 400 million. During training, the maximum number
of sampled tokens for both input and target is 2048. The to-
tal number of training tokens is 400 billion, randomly sam-
pled and masked from our database of 4 billion tokens.

The model training takes 16 hours using 256 NVIDIA
GH200 superchips. All networks, including tokenizers, are
trained from scratch without initializing parameters from
existing large models.

A.4. Missing Modality Handling Details

Unlike 4M, which relies on an aligned multimodal dataset
containing all modalities, our approach uses missing modal-
ity masking. This allows us to scale training across multi-
ple real-world multimodal egocentric datasets, even when
the modalities are unaligned. See Alg. A.1 for the pseudo-
code.

A.5. Inference Details

As an order-agnostic autoregressive model, EgoM2P sup-
ports parallel decoding in each decoding step. All target

Configuration EgoM2P

Training tokens 400B
Warmup tokens 10B
Optimizer AdamW [63]
Opt. momentum �1,�2 = 0.9, 0.99
Base learning rate 1e-4
Total batch size 1024
Weight decay 0.05
Max gradient norm 1
Learning rate sched. Cosine decay

Max input token number 2048
Max target token number 2048
Data type bfloat16

Table A.2. Pretraining settings.

Algorithm A.1 Handling Unaligned Multimodalities

Input: Data iterators {Di}Ni=1, dataset sampling proba-
bilities p = {pi}Ni=1, training modalities {mj}Mj=1

i ⇠ Categorical(p) . Sample dataset index i

/* Sample input and target tokens for i (Sec. A.2) */
↵ ⇠ [↵1,↵2,↵3,↵4] . Sample Dir. concentr. param
↵ Adjust(↵,missing modalities) . Exclude params
for missing modalities
Sample input token counts ic for each modality . Ensure
modality token limits per sample
Sample target token counts tc . Modality token limits
per sample are adjusted by subtracting ic

im 1, tm 1 . Init input and target mask
Random sample ic tokens, set input mask im to 0
Random sample tc tokens (non-overlapping with ic), set
target mask tm to 0
x {data, im, tm} . For each existing modality
x0 {}
for j = 1 to M do . Iterate over M modalities

x0[j][data] 0 . Tensor initialized to 0
x0[j][im] 1 . Denotes not used in input tokens
x0[j][tm] 1 . Denotes not used in target tokens

end for

x0.update(x) . Replace placeholders with real data with
random input/target masks sampled by the Dirichlets
Select 2048 input and target tokens with priority given to
im = 0 and tm = 0
No Enc. self-attention and cross-attention when im = 1
Dec. self-attention processes visible same-modal tokens

tokens can be decoded at the same time, however, increas-
ing the decoding step s to 3 to 6 generally produces higher-
quality predictions. In each decoding step, previously de-
coded target tokens are conditioned to ensure prediction
consistency. See Alg. A.2 for the pseudo-code.

Algorithm A.2 EgoM2P Inference
Input: input tokens I, target modality t, decoding steps
s, target token number n, guidance scale w

T 0 . Init target tokens prediction
im 1 . Init input mask for t. 1: not used as input
tm 0 . Init target mask for t. 0: need to predict
for j = 1 to s do

nj n/s . Num of tokens to decode in this step
/* Pass 1: conditional distribution prediction */
context Enc({I,T[1� im]})
sj Sample(nj , {i | tm[i] = 0}) . Randomly

sample nj indices from unpredicted tokens
pcond[sj] Dec(T[sj], context)
/* Pass 2: unconditional distribution prediction */
context’ Enc({T[1� im]}) . Mask all input

tokens
puncond[sj] Dec(T[sj], context’)
p[sj] puncond + (pcond � puncond) ⇤ w . CFG
T[sj] Nucleus Sampling ⇠ p[sj]
im[sj] 0
tm[sj] 1

end for

Return: T . Target tokens prediction

B. Ablation Studies

B.1. Number of Visible Tokens

First, we do an ablation study on the maximum number of
visible input and target tokens. 4M [8, 76] set this to 256
and argue that “the challenge of the multimodal masked
modeling task is mainly determined by how many visible
input tokens are used; having fewer tokens makes the task
more difficult. This is because the modalities provide a lot
of spatial information about each other, so it’s important to
reduce the number of visible tokens to keep the task chal-
lenging enough.” However, in our task, each video sample
has more than 5000 tokens. We find that increasing the max-
imum input and target token numbers helps the multimodal
masked modeling on videos. We follow 4M to report the
validation set loss as metrics to show how well the pretrain-
ing is. Refer to Tab. B.1. In order to balance the maxi-
mum number of tokens and training efficiency, we choose
the maximum number of input/target tokens as 2048.

B.2. Dataset Sampling Weights

Secondly, in our experiment, we observed that the sampling
weights assigned to different datasets and modalities sig-
nificantly impact both training stability and model perfor-
mance. This is particularly important because our datasets
are highly imbalanced; for instance, EgoExo4D [30] con-
tains 160 times more samples than H2O [49]. Training a
large model on such skewed datasets can result in two ma-

Input/Target Tokens Avg. Loss

1024 5.80
2048 4.93

Table B.1. Maximum visible token ablation.

Method EgoExo4D [30] ADT [80] (unseen)
ATE# RTE# RRE# ATE# RTE# RRE#

EgoM2P w/o EgoGen 0.028 0.005 0.561 0.053 0.009 0.593

EgoM2P 0.017 0.004 0.429 0.032 0.006 0.490

Table B.2. Ablation of EgoGen [52] on camera tracking.

jor issues: Smaller datasets may be overlooked, or smaller
datasets may suffer from overfitting.

To address these challenges, we found that sampling
datasets with probabilities proportional to their sizes helps
achieve better balance. To further explore this, we con-
ducted three ablation studies:
1. Sampling datasets based on probabilities proportional to

their sizes.
2. Sampling datasets using a uniform distribution.
3. Sampling datasets with probabilities proportional to the

logarithm of their sizes.
We observe that across all datasets in our database, the

first sampling method, which selects datasets based on
probabilities proportional to their sizes, consistently results
in the lowest validation loss. For large-scale datasets such as
EgoExo4D, the third method, which samples datasets with
probabilities proportional to the logarithm of their sizes,
achieves a lower validation loss compared to the second
method, which employs a uniform distribution. However,
both the second and third methods tend to overfit during the
early stages of training on smaller-scale datasets.

B.3. EgoGen [52] Contributions

Collecting large-scale egocentric datasets with accurate 3D
ground-truth annotations is expensive, time-consuming, and
non-scalable. Compared to the internet-scale third-person
view video data, EgoGen [52] offers a practical solution to
scale up the training data of egocentric foundation models.
We perform ablation studies on the contributions of egocen-
tric synthetic data from EgoGen [52]: We remove EgoGen
from the training set, fix other settings, and test the model
on the same test set. In Tab. B.2 and B.3, we show that
cheap and high-quality egocentric synthetic data can boost
performance on egocentric camera tracking and egocentric
video depth estimation, complementing expensive real data.

C. Tokenization Error Analysis

EgoM2P predicts tokens in a quantized form, which leads
to the propagation of quantization errors throughout the

Method H2O [49] HOI4D [60] (unseen)
Abs Rel # �1.25 " Abs Rel # �1.25 "

EgoM2P w/o EgoGen 0.062 94.9 0.067 97.1

EgoM2P 0.055 96.0 0.061 98.0

Table B.3. Ablation of EgoGen [52] on depth estimation.

EgoExo4D (cam tracking) EgoExo4D (gaze pred.)
ATE# RTE# RRE# MSE#

EgoM2P 0.017 0.004 0.429 0.0162
Quantization error 0.005 0.001 0.272 0.0000188

Table C.1. Quantization error analysis.

pipeline. To examine the impact of tokenizers, we present
the reconstruction errors in Table C.1. We compare the
quantization error with the EgoM2P prediction error in
the egocentric camera tracking and gaze estimation tasks.
Quantization error is not the bottleneck in our model for
Euclidean data. The relatively high rotation error (RRE)
highlights challenges of VQ for 4D egocentric data in non-
Euclidean space.

D. Post-Training Details

With the evolving quantity of egocentric datasets,
EgoM2P can be easily adapted to unseen datasets by post-
training. In the main paper (Sec. 4.5), we leverage post-
training on the training sets of unseen datasets, including
ADT [80], HOI4D [60], and ASE [6], and demonstrate
that the post-trained EgoM2P outperforms SOTA specialist
baselines. The ADT training set consists of 10,885 paired
RGB and camera trajectory samples, while the HOI4D set
includes 11,740 paired RGB and depth video samples. Ad-
ditionally, the ASE set contains 26,000 paired RGB and
depth video samples. All samples are randomly selected
from the original dataset, ensuring no overlap with the test
set. All modalities are standardized as described in Sec. 3.1.
We initialize the post-training with the pretrained EgoM2P,
and continue to train it for 50B tokens. The number of
warmup tokens is 5B, and other settings are the same as
Tab. A.2. We observe that post-training on ADT [80] tends
to overfit more quickly compared to the other two datasets.
Consequently, we select the best model for each task based
on its respective validation loss during post-training.

E. Egocentric 4D Reconstruction

Given ground-truth camera intrinsics and an egocentric
video, we compare EgoM2P with the SOTA baseline
MegaSaM [54] for 4D reconstruction. Unlike MegaSaM,
which relies on SOTA monocular depth estimators and ex-
pensive geometry optimization, EgoM2P efficiently recon-
structs dynamic egocentric scenes. For a 2-second video at
8 FPS, EgoM2P completes the reconstruction in less than 1

MegaSaM (71 s) EgoM2P (<1 s)

Figure E.1. Dynamic 4D Reconstruction from Monocular Egocen-
tric Videos.

second, whereas MegaSaM requires 71 seconds. We pro-
vide a qualitative comparison in Fig. E.1.

	Introduction
	Related Work
	Method
	Data Curation
	Tokenizers
	Multimodal Masked Pretraining
	Inference
	Implementation Details

	Experiments
	Egocentric Camera Tracking
	Egocentric Gaze Dynamics Estimation
	Egocentric Monocular Video Depth Estimation
	Conditional Egocentric Video Synthesis
	Post-Training

	Conclusion
	Implementation Details
	Tokenizers
	Multimodal Token Sampling
	EgoM2P Pretraining Details
	Missing Modality Handling Details
	Inference Details

	Ablation Studies
	Number of Visible Tokens
	Dataset Sampling Weights
	EgoGen li2024egogen Contributions

	Tokenization Error Analysis
	Post-Training Details
	Egocentric 4D Reconstruction

