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1. Quaternion Representation001

To adapt to quaternion operators, we need to convert im-002
ages into quaternion representations. As shown in Fig-003
ure 1, we use two representation methods: channel quater-004
nion representation (CQR) and spatial quaternion represen-005
tation (SQR). CQR transforms F ∈ RH×W×C into Qc ∈006
HH×W×C/4, while SQR transforms F ∈ RH×W×C into007
Qs ∈ HH/2×W/2×C . When converting quaternion repre-008
sentations back into image features, we use ICQR and ISQR009
to denote the corresponding transformations, as illustrated010
in Figure 2.011

The use of SQR enhances the ability of the network012
to preserve local structures. However, SQR is a window-013
based representation, and its lack of cross-window connec-014
tions limits its modeling capability when used alone. To015
further enhance the network’s modeling capacity, inspired016
by [2, 4], we introduce shifted window quaternion repre-017
sentation (SWQR) into SQR. As shown in the Figure 1,018
SWQR is a shifted window partitioning method that alter-019
nates between two partitioning configurations across con-020
secutive SQRs. SWQR is also demonstrated to be effec-021
tive in experiments, as shown in Table 2. ISWQR denotes022
the inverse operation of SWQR, which converts quaternion023
representations back into image features while shifting the024
window back to its original position, as shown in Figure 2.025

2. More Ablation Experiments026

In this section, we provide additional ablation experiments027
to further validate the effectiveness of our method.028

First, we conduct further ablation studies on the quater-029
nion spatial-spectral interaction (QSSI). QSSI consists of030
two parts: quaternion-based global fusion (QGF) and031
channel-aware quaternion spatial feature injection (CQSFI).032
We perform separate ablations on these two parts, as shown033
in Table 1. When we replace QGF with CQSFI, the model034
performance degrades, indicating that the enhanced correla-035
tion between the two obtained through the quaternion struc-036
ture is crucial for effective fusion. Similarly, when CQSFI is037
removed, the evaluation metrics also decline. This demon-038
strates that explicitly interacting across spatial and channel039
dimensions is essential for the fusion process.040

Table 1. Ablation studies about QGF and CQSFI on the
WorldView-II. The best values are highlighted in bold.

Configuration QGF CQSFI PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓
I # ! 42.1267 0.9689 0.0226 0.9026
II ! # 42.1935 0.9703 0.0215 0.8996

Ours ! ! 42.4846 0.9738 0.0208 0.8554
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Figure 1. Illustration of quaternion representations. We design
Channel Quaternion Representation (CQR), Spatial Quaternion
Representation (SQR), and Shifted Window Quaternion Repre-
sentation (SWQR). In the figure, R represents the real part of the
quaternion, while I, J, and K represent the three imaginary parts of
the quaternion respectively.

We also attempt to remove the shifted window design 041
in the quaternion local spatial structure awareness (QLSA) 042
branch, as shown in Table 2. It can be observed that re- 043
moving the shifted window negatively impacts the model’s 044
performance. This is likely due to the lack of cross-window 045
connections, which limits the network’s modeling capabil- 046
ity. Therefore, our method employs shifted windows to en- 047
hance the spatial quaternion representation. 048

Table 2. Ablation results on the WorldViewII without (w/o) and
with (w) SWQR.

Configuration PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓
w/o SWQR 41.9975 0.9654 0.0223 0.9267
w SWQR 42.4846 0.9738 0.0208 0.8554

3. Additional Dataset Descriptions 049

For visible and infrared image fusion, we use three publicly 050
available datasets in our experiments: M3FD [3], Road- 051
Scene [9], and TNO [8]. The M3FD dataset consists of 052
4200 infrared and visible image pairs, with 3900 pairs used 053
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Figure 2. Illustration of inverse quaternion representations. We de-
sign Inverse Channel Quaternion Representation (ICQR), Inverse
Spatial Quaternion Representation (ISQR), and Inverse Shifted
Window Quaternion Representation (ISWQR). In the figure, R
represents the real part of the quaternion, while I, J, and K rep-
resent the three imaginary parts of the quaternion respectively.

for training and 300 pairs for testing. To evaluate the gener-054
alizability of our method, we train our model on the M3FD055
dataset and test it on the RoadScene and TNO datasets.056

For depth image super-resolution (SR), we use three057
datasets: NYU v2 [7], Middlebury [6], and Lu [5]. The058
NYU v2 dataset contains 1449 RGB-D image pairs, the059
Middlebury dataset contains 30 RGB-D image pairs, and060
the Lu dataset contains 6 RGB-D image pairs. We train061
our model on the first 1000 RGB-D image pairs from the062
NYU v2 dataset and evaluate the trained model on the re-063
maining 449 pairs. To generate low-resolution depth maps,064
we follow the experimental protocol in [1], applying bicubic065
downsampling at different scales (×4, ×8, ×16). We directly066
test the trained model on the NYU v2 dataset as well as the067
additional Middlebury and Lu datasets.068

4. Implementation Details069

In our experiments, all deep learning models are imple-070
mented using PyTorch and trained on an NVIDIA GeForce071
GTX 3090 GPU. For each set, the multispectral (MS) im-072
ages are cropped into patches with the size of 32×32, and073
the corresponding panchromatic (PAN) images are of size074
128×128. During the training phase, these networks utilize075
the Adam optimizer with a learning rate of 1× 10−4. After076

reaching 200 epochs, the learning rate is halved. We employ 077
common evaluation metrics, including PSNR, SSIM, SAM, 078
and ERGAS. Additionally, we utilize three widely-used no- 079
reference IQA metrics for real-world full-resolution scenes: 080
Dλ,DS and QNR. 081

5. Additional Visualization Results 082

In the manuscript, due to the limitation of space, we only 083
present visual comparisons for a subset of methods and 084
datasets. In this section, we provide the visualization results 085
of all methods in each dataset. Figure 3 shows the visual 086
results of all methods on the WorldView-II dataset, while 087
Figure 4 presents the results on the GaoFen-2 dataset, and 088
Figure 5 illustrates the results on the WorldView-III dataset. 089

6. Limitation and Discussion 090

While the proposed QuatPanNet achieves state-of-the-art 091
performance on multiple benchmark datasets, certain lim- 092
itations remain to be addressed. First, although our method 093
effectively enhances spectral and spatial fidelity in pan- 094
sharpening tasks, its performance is validated primarily on 095
standard datasets under controlled conditions. Real-world 096
satellite imagery often involves various complexities, such 097
as atmospheric interference, sensor noise, and dynamic 098
scene variations, which may affect the model’s robustness. 099
Extending the framework to address these challenges and 100
validating its effectiveness on a broader range of real-world 101
datasets is an important direction for future work. 102

Furthermore, the quaternion representations and interac- 103
tions in QuatPanNet are specifically tailored for pansharp- 104
ening tasks. While these techniques have demonstrated 105
significant potential, their adaptability to other image fu- 106
sion and restoration tasks, such as medical image super- 107
resolution, remains unexplored. Investigating the general- 108
izability of quaternion-based interaction mechanisms across 109
diverse image-processing tasks could further expand the im- 110
pact of this work. 111

Addressing these limitations through future research can 112
further improve the applicability of the proposed QuatPan- 113
Net and pave the way for its deployment in a wide range of 114
real-world scenarios. 115

7. Broader Impacts 116

The development of advanced pansharpening techniques, 117
like the proposed quaternion-based spatial-spectral interac- 118
tion framework QuatPanNet, has substantial implications 119
for the fields of remote sensing, environmental monitor- 120
ing, and urban planning. By leveraging the unique rep- 121
resentational capabilities of quaternions, this method en- 122
hances the fidelity of spectral data and the richness of spa- 123
tial details, significantly improving the accuracy of high- 124
resolution multispectral (HRMS) images. These advance- 125
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Figure 3. The visual comparisons between other pan-sharpening methods and our method on WorldView-II.

ments can lead to better resource management, disaster126
response, and climate monitoring by enabling more de-127
tailed and precise satellite image analysis. Furthermore,128
the compact nature of quaternion operations allows for a129
more efficient processing framework, potentially reducing130
the computational resources required for satellite image fu-131
sion tasks.132

However, there are potential societal and ethical con-133
cerns associated with this technology. One key issue is the134
risk of over-reliance on the generated pan-sharpened im-135
ages in critical applications such as environmental policy-136
making. While the improved spectral and spatial fidelity is137
beneficial, the generation of highly realistic but not ground-138
truth-verified images could lead to misinterpretations if im-139
properly used. For instance, the integration of enhanced140
spatial-spectral features might inadvertently introduce arti-141
facts that could bias analytical models or decision-making142
processes.143

It is worth noting that the positive societal impacts of144

QuatPanNet far outweigh its potential issues. We advocate 145
for the responsible use of this technology and its derived 146
applications, ensuring that public and individual interests 147
are not compromised. 148
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Figure 4. The visual comparisons between other pan-sharpening methods and our method on the GaoFen2.
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Figure 5. The visual comparisons between other pan-sharpening methods and our method on WorldView III.
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