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1. Overview

In this appendix, we first present the targeted attack suc-

cess rates (TASRs) of ITDSgs-DIM, the results of combin-

ing SDS with existing methods, the comparison with DIM-

enhanced BSR [9], the ablation studies conducted on other

surrogate models, the potentiator effect and computational

costs. Subsequently, we assess the perception of adver-

sarial examples (AEs) generated by various state-of-the-art

(SOTA) attack methods to prove that the superior attack per-

formance of our ITDS is not achieved at the cost of per-

ception. Also, we present a series of AEs of each method.

Finally, we discuss the rigor of dataset selection.

2. Evaluation on ITDSgs-DIM

Since in the main text we only use ITDSfs-DIM as the rep-

resentative of our method, in this section we will present

the attack performance evaluation of ITDSgs-DIM and con-

sider CFM-DIM [2] as the rival. As shown in Table 1, it can

be observed that compared to the current targeted attack

method CFM-DIM, ITDSgs-DIM also demonstrates supe-

rior performance, with its BAvg on RN50 [3], VGG16 [8],

MN-v3 [4] and RegN [6] being 12.7%, 13.0%, 7.9%, and

13.2% higher than the former, respectively. The maximum

average black-box TASR gap in CNNs and ViTs appears on

VGG16 at 17.5% and RegN at 19.9%.

3. Evaluation on Advanced Methods Com-

bined with SDS

To demonstrate that the second part of our proposed ITDS,

SDS, has more room for improvement, in this section we

will show its attack performance when combined with ex-

isting advanced methods, Admix [10] and CFM, as shown

in Tables 2 and 3. It can be observed that whether it is Ad-

mix and CFM or Admix-DIM and CFM-DIM, combining

SDS with them results in a significant enhancement in at-

tack performance on almost all models. In particular, the

maximum improvements for Admix and CFM are 9.3% on

RN50 and 5.2% on RegN, respectively, while the maximum

improvements for Admix-DIM and CFM-DIM are 22.6%

on RegN and 8.7%, respectively.

4. Comparison with DIM-Enhanced BSR

As we have discussed in the main text of the paper, it is

unfair to directly compare competition-based methods with

transformation-based methods. Therefore, the industry gen-

erally combines the former with DIM before comparing it

with the latter. However, as we introduced in Section 2.2

of the main text, both ODIM [1] and SIA [11] have already

integrated DIM [13] into their principles (their transforma-

tion strategies are in the same lineage as DIM), but BSR’s

transformation strategy style differs from theirs. Therefore,

to further demonstrate the superiority of ITDS, we will per-

form an additional and more challenging comparative eval-

uation, that is, compared with the DIM-enhanced BSR, as

shown in Table 4. The experimental results show that even

when compared to DIM-enhanced BSR, our ITDS-DIM

still has a significant advantage in terms of transferable at-

tack performance across multiple models.

5. Ablation Studies on Other Models

In this section, we present additional ablation studies con-

ducted on VGG16 and MN-v3, as shown in Figures 1 and

2, with all corresponding parameter settings consistent with

Figure 4 in the paper. We can see that the experimental

phenomena they exhibit allow us to draw analyses and con-

clusions that are consistent with those discussed in Section

4.4 of the paper.

6. Potentiator Effect and Computational Cost

Leveraging the adaptive nature of ITDS, it can be com-

bined with any deformation transformation-based method

as a potentiator, and in the paper we only demonstrate the

performance of ITDS-DIM. Using the exact experimental

settings reported in the paper, Table 5 compares ITDS+BSR
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Model Attack RN50 VGG16 MN-v3 RegN Inc-v3 RN101 DN161 EffN ViT DeiT ConViT PiT BAvg.

RN50
CFM-DIM 99.7* 68.4 47.9 66.0 49.2 88.4 79.5 41.9 18.0 12.5 14.9 20.0 46.0

ITDSgs-DIM 100* 74.5 67.9 78.5 67.7 94.1 93.0 59.0 40.2 21.7 22.3 27.5 58.7

VGG16
CFM-DIM 19.2 86.3* 4.1 23.7 3.9 5.9 14.0 6.1 0.4 0.6 0.4 1.6 7.2

ITDSgs-DIM 38.4 100* 24.0 31.7 25.5 18.1 33.8 27.5 8.9 3.2 3.4 7.2 20.2

MN-v3
CFM-DIM 34.7 24.9 99.8* 31.6 29.4 33.4 27.8 44.2 28.1 11.8 14.2 11.6 26.5

ITDSgs-DIM 46.5 27.1 100* 35.8 37.6 44.2 40.4 55.0 46.2 18.1 15.6 12.5 34.4

RegN
CFM-DIM 71.5 61.9 50.8 93.0* 38.3 61.0 72.3 61.6 22.5 21.7 22.1 43.3 47.9

ITDSgs-DIM 78.9 50.1 66.7 99.9* 63.1 70.2 81.3 72.3 55.6 40.8 41.0 51.8 61.1

Table 1. TASRs (%) on twelve pre-trained models with ITDSgs-DIM and CFM-DIM. The AEs are crafted on the RN50, VGG16, MN-v3,

and RegN models, respectively. An asterisk (*) indicates white-box attacks. Boldface represents the results of our method.

Model Attack RN50 VGG16 MN-v3 RegN Inc-v3 RN101 DN161 EffN ViT DeiT ConViT PiT Bavg.

RN50

Admix 100* 7.9 2.1 4.9 1.6 38.6 19.8 0.6 0.3 0.1 0.2 0.1 6.9

Admix+SDSfs 100* 18.9 10.3 16.7 8.5 63.7 50.9 3.5 2.2 0.9 0.8 1.5 16.2

Admix+SDSgs 100.0 18.4 10.0 17.5 8.7 65.5 52.4 3.6 1.7 0.9 0.9 1.7 16.5

CFM 100* 45.0 17.7 35.5 9.5 87.7 60.7 5.6 2.0 1.5 1.5 3.9 24.6

CFM+SDSfs 100* 52.6 23.6 45.2 12.8 92.8 74.4 7.1 3.6 2.1 2.7 6.1 29.3

CFM+SDSgs 100* 51.4 22.5 43.9 11.9 92.0 72.9 7.8 3.1 1.7 2.4 5.4 28.6

VGG16

Admix 4.3 88.4* 1.4 7.7 0.7 0.9 4.1 0.5 0.1 0.1 0.1 0.5 1.8

Admix+SDSfs 8.3 100* 4.4 11.2 1.9 2.6 11.2 1.7 0.2 0.3 0.3 1.3 3.9

Admix+SDSgs 7.8 99.9* 4.2 11.1 1.9 2.4 11.3 1.6 0.2 0.2 0.2 0.9 3.8

CFM 3.9 86.1* 1.2 8.4 0.8 1.0 2.8 0.6 0.1 0.2 0.1 0.3 1.7

CFM+SDSfs 4.9 99.8* 1.7 9.0 1.2 1.3 3.5 0.8 0.3 0.4 0.2 0.3 2.1

CFM+SDSgs 4.4 99.8* 1.6 9.0 1.1 1.5 3.1 0.7 0.2 0.3 0.2 0.4 2.0

MN-v3

Admix 0.6 0.4 99.3* 0.3 0.6 0.3 0.4 0.4 0.2 0.1 0.2 0.1 0.3

Admix+SDSfs 2.3 1.0 100* 1.5 1.9 1.3 1.9 2.2 1.4 0.3 0.7 0.6 1.3

Admix+SDSgs 2.1 0.9 100* 1.2 2.2 1.5 1.8 2.3 1.1 0.4 0.6 0.4 1.3

CFM 10.4 8.9 100* 10.4 7.4 9.6 7.7 14.2 7.2 2.7 4.0 3.1 7.8

CFM+SDSfs 11.9 10.7 100* 11.5 9.3 11.5 10.3 15.0 7.7 4.5 5.2 4.6 9.3

CFM+SDSgs 11.7 10.1 100* 11.6 9.1 10.4 9.5 14.8 8.2 5.4 5.4 4.7 9.1

RegN

Admix 1.4 1.1 1.6 95.8* 0.4 0.5 1.6 0.5 0.3 0.2 0.2 0.4 0.7

Admix+SDSfs 12.7 8.0 9.7 100* 4.5 4.9 17.2 4.8 2.0 1.8 1.5 5.2 6.6

Admix+SDSgs 12.7 7.5 9.9 100* 4.4 5.8 16.8 5.3 2.0 1.9 1.2 5.3 6.6

CFM 21.4 23.3 14.1 92.3* 4.4 12.1 19.6 9.0 1.4 1.2 1.1 5.9 10.3

CFM+SDSfs 32.4 31.5 21.0 100* 6.5 17.7 28.2 14.0 3.2 2.7 2.6 10.0 15.4

CFM+SDSgs 31.4 31.2 22.4 100* 5.8 18.2 28.8 13.7 3.4 2.7 2.5 10.1 15.5

Table 2. TASRs (%) on twelve pre-trained models using Admix and CFM combined with SDS (S1: SDSfs and S2: SDSgs). The AEs are

crafted on the RN50, VGG16, MN-v3, and RegN models, respectively. An asterisk (*) indicates white-box attacks.

(a) (b) (c) (d)

Figure 1. Ablation studies on the VGG16 model. (a) - (d): TASRs (%) on the other eleven models with the AEs crafted by ITDS-DIM,

where the default values for n, β, k and Tsub are set to 3, 1.5, 10 and 10 respectively, when test parameters for each other.



Model Attack RN50 VGG16 MN-v3 RegN Inc-v3 RN101 DN161 EffN ViT DeiT ConViT PiT Bavg.

RN50

Admix-DIM 100* 51.9 25.5 53.6 29.1 83.8 77.2 28.8 8.0 4.3 5.1 10.1 34.3

Admix-DIM+SDSfs 100* 60.8 47.4 68.2 56.0 92.1 91.1 50.7 24.3 12.7 15.4 19.2 48.9

Admix-DIM+SDSgs 100.0 61.4 47.9 69.4 55.9 91.9 90.9 52.6 24.8 11.8 14.9 20.0 49.2

CFM-DIM 99.7* 68.4 47.9 66.0 49.2 88.4 79.5 41.9 18.0 12.5 14.9 20.0 46.0

CFM-DIM+SDSfs 99.9* 78.7 58.7 78.9 56.7 94.5 88.8 53.0 21.6 15.1 18.3 26.1 53.7

CFM-DIM+SDSgs 99.9* 79.1 59.7 78.4 57.6 94.5 89.6 53.3 22.2 15.9 17.6 27.2 54.1

VGG16

Admix-DIM 20.2 88.0* 6.8 23.9 5.7 5.4 16.0 8.0 0.8 0.5 0.5 2.1 8.2

Admix-DIM+SDSfs 27.4 99.9* 15.1 26.8 14.0 9.3 27.2 19.0 3.6 1.8 1.8 4.5 13.6

Admix-DIM+SDSgs 27.8 99.9* 14.5 27.8 13.9 9.5 28.0 18.2 3.5 1.3 1.8 4.7 13.7

CFM-DIM 19.2 86.3* 4.1 23.7 3.9 5.9 14.0 6.1 0.4 0.5 0.4 1.6 7.2

CFM-DIM+SDSfs 21.3 99.6* 5.8 26.6 4.3 6.2 16.8 6.4 0.6 0.7 0.5 2.1 8.3

CFM-DIM+SDSgs 23.8 99.7* 5.2 28.1 4.1 6.1 16.7 6.4 0.5 0.7 0.5 2.0 8.5

MN-v3

Admix-DIM 25.0 10.4 100* 14.6 18.8 16.7 29.2 16.7 10.4 2.1 7.4 2.1 13.9

Admix-DIM+SDSfs 27.3 13.6 100* 19.3 25.9 21.3 31.4 41.5 26.8 9.1 9.8 8.0 21.3

Admix-DIM+SDSgs 25.8 12.8 99.9* 17.8 22.4 21.4 35.3 38.2 24.1 8.7 8.3 7.5 20.2

CFM-DIM 34.7 24.9 99.8* 31.6 29.4 33.4 27.8 44.2 28.1 11.8 14.2 11.6 26.5

CFM-DIM+SDSfs 36.8 29.4 99.9* 33.2 32.5 35.7 31.5 48.0 31.1 14.8 15.2 13.6 29.2

CFM-DIM+SDSgs 39.4 30.4 100* 35.9 32.6 36.3 30.9 49.6 32.4 13.6 15.7 14.2 30.1

RegN

Admix-DIM 39.4 25.2 20.6 92.6* 14.8 23.1 47.7 33.1 7.6 7.1 7.3 22.9 22.6

Admix-DIM+SDSfs 65.4 37.9 45.7 100* 44.0 50.5 68.3 63.6 31.2 24.4 23.9 42.1 45.2

Admix-DIM+SDSgs 64.5 36.9 44.7 100* 42.4 49.0 68.8 63.9 32.7 24.2 23.9 43.2 44.9

CFM-DIM 71.5 61.9 50.8 93.0 38.3 61.0 72.3 61.6 22.5 21.7 22.1 43.3 47.9

CFM-DIM+SDSfs 81.0 72.1 63.2 100* 46.0 70.0 79.4 72.8 31.5 27.2 27.5 52.2 56.6

CFM-DIM+SDSgs 80.9 71.7 62.1 100* 45.7 68.4 78.4 73.4 29.7 25.4 26.7 51.1 55.8

Table 3. TASRs (%) on twelve pre-trained models using Admix-DIM and CFM-DIM combined with SDS (S1: SDSfs and S2: SDSgs).

The AEs are crafted on the RN50, VGG16, MN-v3, and RegN models, respectively. An asterisk (*) indicates white-box attacks.

Model Attack RN50 VGG16 MN-v3 RegN Inc-v3 RN101 DN161 EffN ViT DeiT ConViT PiT BAvg.

RN50
BSR-DIM 99.9* 90.3 56.1 90.3 44.0 98.3 95.7 41.2 28.3 24.6 28.1 48.4 58.6

ITDS-DIM 100* 79.3 70.3 82.8 69.6 95.6 94.6 62.0 44.4 23.6 24.7 31.6 61.7

VGG16
BSR-DIM 46.1 86.9* 10.8 52.9 8.6 18.0 43.8 14.8 2.5 1.6 1.3 8.3 19.0

ITDS-DIM 42.0 100* 24.8 34.8 25.7 19.8 35.3 24.9 8.5 2.8 3.2 7.8 20.9

MN-v3
BSR-DIM 33.6 16.8 99.4* 25.7 18.5 23.3 27.2 36.8 23.7 10.5 12.4 12.0 21.8

ITDS-DIM 49.5 27.3 100* 39.9 39.2 44.9 41.6 58.0 46.7 18.1 17.0 13.7 36.0

RegN
BSR-DIM 75.1 76.4 42.7 92.3 22.3 55.6 78.6 48.4 24.3 25.6 24.8 57.2 48.2

ITDS-DIM 82.2 50.5 68.9 99.9* 64.6 73.1 84.9 75.6 56.5 43.0 40.8 54.7 63.2

Table 4. TASRs (%) on twelve pre-trained models using BSR-DIM and ITDS-DIM. The AEs are crafted on the RN50, VGG16, MN-

v3, and RegN models, respectively. An asterisk (*) indicates white-box attacks. ITDS-DIM represents the combination of ITDS, which

integrates S1, with DIM, and the boldface represents the results of this combination.

(a) (b) (c) (d)

Figure 2. Ablation studies on the MN-v3 model. (a) - (d): TASRs (%) on the other eleven models with the AEs crafted by ITDS-DIM,

where the default values for n, β, k and Tsub are set to 3, 1.5, 10 and 10 respectively, when test parameters for each other.



Attack RN50 VGG16 MN-v3 RegN ViT PiT Bavg.

BSR 100* 88.6 49.1 86.8 18.1 41.9 56.9

ITDS-BSR 99.8* 93.2 87.1 90.8 67.1 58.6 79.3

SIA 100* 86.1 56.6 84.9 31.0 39.6 59.7

ITDS-SIA 100* 95.4 89.0 93.2 71.7 60.4 81.9

Table 5. TASRs (%) of ITDS combined with other attacks on 1000

images using RN50.

Attack DIM Admix CFM SIA BSR ITDS

Time (s/img) 0.39 3.3 0.42 7.2 4.5 5.7

GPU Mem (MB) 2840 14618 3188 18966 18842 2890

Table 6. Comparison of computational and memory costs on

RTX3090, averaged over 2000 images (batch size = 8) on RN50.

and ITDS+SIA, revealing substantial performance gains for

both combinations.

The comparison of computational costs is shown in Ta-

ble 6, where all competition-based methods use DIM. Al-

though ITDS has higher overhead than DIM and CFM, its

cost remains within the hardware budget and achieves bet-

ter attack results without significantly increasing space or

memory. Compared to Admix, BSR and SIA, which con-

catenate multiple transformations in each iteration, ITDS is

also more efficient.

Model Attack LPIPS ↓ SSIM ↑ PSNR ↑

RN50

Admix 0.35 0.59 24.76

CFM 0.36 0.59 24.78

ITDSfs 0.35 0.60 24.77

ITDSgs 0.34 0.60 24.80

VGG16

Admix 0.32 0.59 24.71

CFM 0.34 0.59 24.64

ITDSfs 0.33 0.60 24.75

ITDSgs 0.31 0.61 24.79

MN-v3

Admix 0.37 0.59 24.56

CFM 0.39 0.59 24.73

ITDSfs 0.38 0.61 24.61

ITDSgs 0.38 0.61 24.66

RegN

Admix 0.32 0.59 24.81

CFM 0.33 0.58 24.82

ITDSfs 0.33 0.59 24.85

ITDSgs 0.33 0.59 24.87

Table 7. Perceptual quality scores for competition-based attacks.

The AEs are crafted on the RN50, VGG16, MN-v3, and RegN

models, respectively. Boldface represents the worst results.

7. Perception Study

Under the same perturbation constraints, it is well known

that there are significant perception differences in AEs. As a

result, we conducted an ITDS perception study in conjunc-

tion with the other baseline methods. We use SSIM [12],

Model Attack LPIPS ↓ SSIM ↑ PSNR ↑

RN50

DIM 0.38 0.59 24.78

ODIM 0.37 0.58 24.76

SIA 0.34 0.60 24.82

BSR 0.35 0.60 24.85

Admix-DIM 0.37 0.59 24.73

CFM-DIM 0.37 0.59 24.74

ITDSfs-DIM 0.36 0.61 24.78

ITDSgs-DIM 0.36 0.61 24.80

VGG16

DIM 0.35 0.59 24.83

ODIM 0.35 0.59 24.80

SIA 0.31 0.60 24.88

BSR 0.30 0.60 24.92

Admix-DIM 0.35 0.59 24.77

CFM-DIM 0.36 0.58 24.80

ITDSfs-DIM 0.35 0.60 24.79

ITDSgs-DIM 0.35 0.60 24.81

MN-v3

DIM 0.38 0.60 24.72

ODIM 0.37 0.59 24.71

SIA 0.34 0.61 24.76

BSR 0.35 0.61 24.77

Admix-DIM 0.38 0.60 24.67

CFM-DIM 0.38 0.59 24.71

ITDSfs-DIM 0.37 0.62 24.67

ITDSgs-DIM 0.36 0.62 24.70

RegN

DIM 0.35 0.59 24.79

ODIM 0.34 0.58 24.75

SIA 0.31 0.60 24.88

BSR 0.32 0.61 24.93

Admix-DIM 0.34 0.59 24.76

CFM-DIM 0.34 0.59 24.77

ITDSfs-DIM 0.35 0.61 24.77

ITDSgs-DIM 0.34 0.61 24.79

Table 8. Perceptual quality scores for transformation-based at-

tacks. The AEs are crafted on the RN50, VGG16, MN-v3, and

RegN models, respectively. Boldface represents the worst results.

PSNR [5] and LPIPS [14] as perceptual metrics, which as-

sess how similar two images are in a way that corresponds

to human judgment, and the results are shown in Tables 7

and 8. It should be noted that the bold quality scores in Ta-

bles 7 and 8 indicate the worst results. The experimental

results show that ITDS’s superior attack performance does

not come at the expense of perception.

8. Visualizations on Adversarial Examples

Figure 3 displays eight randomly selected clean images

along with their corresponding AEs generated by various at-

tack methods with the target label ‘cock’. Specifically, these

AEs were crafted on the RN50 model using SIA, Admix-

DIM, CFM-DIM, and ITDS-DIM, respectively. Notably,

the crafted AEs are imperceptible to the human eye.



Figure 3. AEs crafted by various attack methods with the target label ‘cock’ on RN50.

9. Discuss the rigor of dataset selection

In our experimental evaluation, our original intention was

to use the NIPS2017 dataset1, but in this study, we sought

to conduct a more rigorous and up-to-date evaluation of

targeted adversarial attacks. To this end, we utilized a di-

verse and comprehensive set of pre-trained models, includ-

ing 11 CNNs (three of which are adversarially trained) and

4 ViTs. Most of these models were sourced from the official

torchvision pre-trained models, while others were from the

corresponding open-source pytorch pre-trained versions.

We randomly selected 2,000 higher-quality 3× 224× 224-

sized images from ILSVRC2012 [7] that could be correctly

classified by all tested models with average confidence level

of over 90%. This selection process meets the basic re-

quirement for adversarial attacks, where the original sam-

ples must be correctly identified by the target models.

In contrast, although the NIPS2017 dataset has been

widely used in adversarial attack research, it has certain

limitations in terms of rigor and comprehensiveness. Ac-

cording to official information, pre-trained Inception-v3 and

Inception-ResNet-v2 models in TF-Slim correctly classify

most images from the DEV and TEST datasets. However,

1https://www.kaggle.com/c/nips-2017-targeted-

adversarial-attack/data.

when we applied our comprehensive set of models to fil-

ter the NIPS2017 dataset using a set-intersection method,

fewer than 400 images satisfied the criteria, highlighting

its shortcomings in robustness and coverage. Therefore,

to ensure a convincing and comprehensive evaluation, we

decided not to use the NIPS2017 dataset and instead con-

ducted experiments on our higher-quality dataset.

https://www.kaggle.com/c/nips-2017-targeted-adversarial-attack/data
https://www.kaggle.com/c/nips-2017-targeted-adversarial-attack/data
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