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1. Introduction

This document provides additional details that could not be
included in the main paper due to space constraints. In
Sec. 3, we list all abbreviation in the main manuscript for
reference, enhancing the readability. In Sec. 3, we present
the statistical results of our psychological experiment. In
Sec. 4, we explain the rationale behind selecting the 12 spe-
cific Action Units (AUs) used in the paper. Sec. 5 show-
cases the matrices representing intrinsic and extrinsic prior
knowledge. Sec. 6 contains our full analysis of the con-
fusion matrices. Sec. 7 describes the federal client’s data
situation. Sec. 8 includes supplementary results under the
UAR metric in the context of federated learning. Addition-
ally, Sec. 9 shows the ablation experiments we performed
for different hyperparameter settings.

2. List of Abbreviations

Tab. 1 lists all abbreviations appearing in the text along with
their corresponding full forms.

3. More Details and Statistical Results on our
Psychological Experiment

3.1. Rationale for the Number of Subjects

In psychological research, when sample data adheres to a
normal distribution, more accurate statistical computations
can be performed, leading to more reliable results. Accord-
ing to the Central Limit Theorem, as the sample size in-
creases, the distribution of sample means approximates a
normal distribution, even if the underlying data is not nor-
mally distributed. In psychological studies, it is generally
accepted that a sample size of 30 or more participants is
sufficiently large for the sample to approximate normality.

Table 1. List of Abbreviations in the main text

Abbreviation Full Term

ME Micro-expression
MER Micro-expression Recognition
AU Action Unit
OF Optical Flow
FL Federated Learning

ROI Regions of Interest
GCN Graph Convolutional Network
GAT Graph Attention Network
LBP Local Binary Pattern

MDMO Main Directional Mean Optical Flow
MEGC ME Grand Challenge

HDE Holdout database Evaluation
CDE Composite Database Evaluation
LRM Localized ROI Modeling
LFE Local ROI Feature Extractor
SSE Spatial Structure Encoder
AFR Relationship Modeling among AU Features
AFE AU Feature Extractor
GSE Group Squeeze and Excitation
FC Fully Connected Layers
AP AU Prediction

DPK-GAT Dynamic Prior Knowledge GAT
DSI Dual-Stream InceptionNet
FA Federated Aggregation

P-FedProx Personalized FedProx
LOSO Leave-One-Subject-Out
UF1 Unweighted F1 Score
UAR Unweighted Average Recall

Given that our study involves 30 participants, this sample
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size is considered adequate for the purposes of the analysis.

3.2. Consistency in Emotional Expression across
Cultures

Our study is based on the premise that emotional expres-
sion is universally consistent across cultures. Darwin, in his
book The Expression of the Emotions in Man and Animals,
argued that different facial expressions are innate and uni-
versal, understood by all humans. Contemporary research
supports this view, such as Ekman’s studies, where partic-
ipants from 10 different countries and regions were shown
30 photos of faces expressing¥ six basic emotions (happi-
ness, surprise, sadness, fear, disgust, and anger). The results
demonstrated a high level of consistency in the recognition
of these six emotions across cultures. Meantime, we ac-
knowledge that incorporating a more diverse cultural back-
ground would enhance the reliability of our results, we plan
to collaborate with other research institutions in the future
to gather more data.

3.3. More Detail on AU-based Material Composi-
tion

The materials used in this study are facial images pro-
vided by Professor Ekman. The selected facial Action Units
(AUs) represent one of the six basic emotions, including:
AU1, AU2, AU4, AU5, AU6, AU7, AU9, AU10, AU12,
AU14, AU15, AU16, AU17, AU22, AU23, AU24, AU25,
and AU43. During the image stitching process, we ensured
that facial images with consistent expression intensity were
used. The stitched images include both coordinating pairs
(e.g., AU6 and AU12, AU2 and AU25) and mutually exclu-
sive pairs (e.g., AU4 and AU12, AU6 and AU15).

3.4. Statistical Results
As described in the main paper, participants were tasked
with evaluating each presented image combination to de-
termine whether it represented a coordinated combination.
They were also asked to rate the degree of coordination or
lack thereof. Tab. 2 summarizes the participants’ accuracy
in judging the combinations (i.e., correctly identifying co-
ordinated combinations as coordinated and uncoordinated
combinations as uncoordinated) as well as their ratings for
the degree of coordination or lack of coordination. Fig. 2
lists the AU combinations most frequently selected as coor-
dinated or uncoordinated.

The results indicate that participants were more likely
to accurately recognize coordinated AU combinations and
assigned higher scores to their degree of coordination.
This finding suggests that at the cognitive level, coordi-
nated AUs—representing consistent emotional expressions
across the upper and lower face—are more readily accepted
and processed. In contrast, uncoordinated AU combina-
tions conveyed atypical emotional expressions, which posed

greater challenges for participants in recognizing the asso-
ciated emotions.

Table 2. Descriptive statistics for the accuracy and ranking scores
of coordinated AU combinations and mutually exclusive AU com-
binations. C-AU and N-AU represent the coordinated AU pairs
and uncoordinated AU pairs, respectively. M and SD denote the
mean value and the standard deviation.

Accuracy rate Score scale

C-AU N-AU C-AU N-AU

M 0.813 0.544 109.633 54.8
SD 0.119 0.196 27.697 28.850

4. AU Selection Strategy
In this psychological experiment, we did not impose re-
strictions on the intensity of AU movements. All selected
AUs are related to facial expressions, and our primary focus
was on investigating the coordination or mutual exclusiv-
ity of different AU combinations. However, in the context
of micro-expression (ME) expression, some AUs rarely ap-
pear. Therefore, for the MER algorithm design, we filtered
the AUs based on their frequency of appearance in the ME
database, retaining only the 12 AUs listed in Table 1 in the
main paper.

In particular, We selected 12 AUs associated with ME
features primarily based on statistical results from DFME,
the largest current ME database, while also considering
AU distributions in other databases, excluding those AUs
that are not commonly observed across these sources. As
shown Fig. 1, these AUs, i.e., AU 1, 2, 4, 5, 6, 7, 9, 10,
12, 14, 15, 17, are chosen because they exhibit high ac-
tivation strength and frequency. Notably, although AU20,
AU23, AU24 and AU38 show higher activation levels than
AU15 and AU9 in the DFME dataset, these three AUs were
not significantly activated in CAS(ME)3. In contrast, AU9
and AU15 exhibit distinguishable facial ME movements
with notable activation levels across the two datasets. Since
our goal for MER is to ensure validation across multiple
datasets, it is crucial to select AUs that are consistently an-
notated and exhibit relatively high activation levels in all
datasets. Therefore, AU9 and AU15 were chosen to replace
AU23 and AU24. The emergence of these ME-related AUs
has greatly helped MER.

5. Prior Knowledge
5.1. Intrinsic Prior Knowledge
The intrinsic prior Knowledge, rooted in a psychology
study, forms the adjacency matrix of DPK-GAT. Specifi-
cally, in our psychological experiment, we primarily inves-
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Figure 1. AU Occurrence associated with ME characteristics in DFME.
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Figure 2. Statistics of the number of correct judgments for the
coordinated AU combinations and mutually exclusive AU combi-
nations. Combinations more than 20 times, i.e., exceeding two-
thirds, are listed.

tigated AU combinations that cannot be directly explained
by physiological contradictions, specifically focusing on
combinations where AUs are distributed across the upper
and lower face, and their expressions are either coordinated
or mutually exclusive. In the prior matrix for MER, we con-
sidered both aspects: one related to the physiological coor-
dination or mutual exclusivity of AUs (e.g., AU4 frowning
and AU5 widening the eyes, where the muscle movements
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Figure 3. Intrinsic prior knowledge from psychology study.

corresponding to these two AUs cannot occur simultane-
ously), and the other related to the emotional expression and
perception of AUs. We used both experimental results and
prior knowledge about the muscle-emotion relationships to
make further judgments. As shown in Fig. 3, this matrix il-
lustrates the collaborative relationships between AUs, inte-
grating anatomical physiology, emotional psychology, and
our experimental findings. Specifically, the diagonal ele-
ments are always 1, indicating that each AU is entirely co-
ordinated with itself. For each row, the off-diagonal ele-
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Figure 4. Extrinsic prior knowledge from statistical regularity in
DFME.

ments with a value of 1 signify coordination with the diago-
nal element of that row. In contrast, those with a value of 0
indicate mutual exclusivity with the diagonal element. Ad-
ditionally, it should be noted that our psychological study
primarily demonstrated that perceptible mutual exclusions
and coordinations exist between AUs in the upper and lower
facial regions. However, the specific quantitative relation-
ships between AUs are highly complex, varying with dif-
ferent action intensities and emotions. Therefore, we pro-
vided a simple binary (0-1) prior knowledge matrix to rep-
resent AU relationships and guide the network, rather than
attempting a precise quantification.

5.2. Extrinsic Prior Knowledge
Using a sample of 7,526 MEs from the DFME dataset, we
analyze the co-occurrence of AUs, as each ME sample is an-
notated with corresponding AUs or AU combinations. This
analysis is further utilized to generate the prior attention ma-
trix required by DPK-GAT. The data-driven co-occurrence
matrix is called Extrinsic prior Knowledge and illustrated
in Fig. 4.

6. Confusion Matrix
Here, we provide the confusion matrices further to dis-
cuss our model’s performance on the MER task, as shown
in Fig. 5. We found that our model achieved excellent re-
sults on categories of happiness and surprise in a seven-
classification task on DFME, which suggests that our model
further understands the facial topology by extracting the
movement patterns of the facial muscles and improves the
discriminative ability for different emotion categories. At
the same time, we found that the model is prone to con-

founding when dealing with negative emotions; for exam-
ple, the model often predicts anger as disgust and much of
this result stems from the slight feature differentiation be-
tween samples of the same polarity emotions. The weak
differences between these samples will likely be further
masked by cropping and calculating the facial optical flow.
For CAS(ME)3, the model shows some degree of confound-
ing in the positive categories due to too few samples in
the positive categories of CAS(ME)3 (negative: 457, pos-
itive: 55, surprise: 187), resulting in the model not learning
enough discriminative representations between categories.

7. Federal Local Client Settings
As we mentioned in the main paper, to simulate a realis-
tic scenario in which data can not be shared, based on the
number of subjects, the DFME and CAS(ME)3 datasets are
randomly partitioned into multiple local clients based on
subject numbers. Specifically, DFME is divided into five
equal parts, and CAS(ME)3 into two equal parts. Notably,
due to variations in the number of MEs per subject, the
resulting clients, despite having an equal number of sub-
jects, exhibit differences in ME data distribution and quan-
tity. The specific amount of ME samples for each client is
listed in Tab. 3.

Table 3. Federal Local Client Settings

Dataset Client ME Sample Size

DFME

Client1 1389
Client2 1547
Client3 1334
Client4 1492
Client5 1513

CAS(ME)3 Client1 426
Client2 273

8. Additional Federated Experimnet
As shown in Fig. 6, P-FedProx outperforms FedProx and
FedAvg on two CAS(ME)3-split local clients, demonstrat-
ing the value of client-specific global models. From our per-
spective, even though the data in DFME is divided among
five local clients, the amount of data in these clients is still
significantly larger than that in the clients from CAS(ME)3.
The disparities in both data size and distribution pose sig-
nificant challenges to traditional federated learning meth-
ods, such as FedAvg and FedProx. When compared to re-
cent personalized FL methods, P-FedProx achieves superior
performance to FedRep and ELLP, and is competitive with
FedAS, while requiring only a significantly more straight-
forward implementation.



an
ge

r

con
tem

pt

dis
gu

st fea
r

ha
pp

ine
ss

sad
ne

ss

sur
pri

se

Predicted label

anger

contempt

disgust

fear

happiness

sadness

surprise

Tr
ue

 la
be

l

0.13 0.04 0.48 0.08 0.06 0.13 0.09

0.05 0.22 0.13 0.06 0.31 0.14 0.08

0.08 0.03 0.60 0.07 0.08 0.09 0.04

0.08 0.03 0.41 0.13 0.10 0.13 0.13

0.02 0.07 0.07 0.04 0.67 0.09 0.05

0.07 0.05 0.33 0.11 0.11 0.24 0.08

0.02 0.01 0.08 0.03 0.03 0.04 0.78

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) DFME

ne
ga

tiv
e

po
siti

ve

sur
pri

se

Predicted label

negative

positive

surprise

Tr
ue

 la
be

l

0.82 0.07 0.11

0.58 0.36 0.05

0.28 0.04 0.68 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) CAS(ME)3

Figure 5. Confusion matrices for our model on the DFME and CAS(ME)3 datasets.
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Figure 6. Compare the performance of different federated learning frameworks on different clients: UAR

9. Hyperparameter Ablation Experiments

9.1. Model Fusion Weight for Local Client θ in Fed-
erated Learning

In our P-FedProx framework, θ controls the weight of the
model fusion for each local client in the new communica-
tion round. Specifically, the larger the value of θ, the greater
the influence of the locally trained model weight from the
previous round on the new communication round, resulting
in a stronger impact on the local training in the upcoming
round. We conducted experiments on the effects of differ-
ent θ (0.7,0.8,0.9), and the experimental results are shown
in Fig. 7. We found that during the training process of most
local clients, when θ is equal to 0.9, the model has better
convergence and ability to cope with heterogeneous data.
This means that in each federated communication round,
smaller fusion weights for the remaining clients can help
stabilize the local training of the current client, while en-
hancing feature extraction capability and reducing the im-
pact of data heterogeneity on local training.

9.2. Loss Function Weight α

As written in the main paper, α is used to balance the
weights of the components in the loss function. Specifi-
cally, α1 is used to control the sentiment classification loss
weights during model training, α2 and α3 are used to con-
trol the AU prediction loss weights, and α4 is used to regu-
late the impact of the global model on local client training
in each communication round of federated learning. Here,
we provide experiments with different parameters α in the
equations. 8 and 9, where α1,α2,α3 in Eq. 8 are listed
in Tab. 4 and α4 in Eq. 9 are shown in Fig. 8. In the fi-
nal evaluation of the model, we set α1,α2, and α3 to 0.8,
0.2, and 0.2, respectively. We try to crank up the weight of
MER loss to satisfy the final recognition needs while bal-
ancing the weight of AU recognition loss to guide the net-
work in uncovering more accurate AU co-occurrence pat-
terns. When further extended to the federated paradigm, as
can be seen from the UF1 and UAR results in Fig. 8, P-
FedProx achieves optimal results when α4 is set to 0.001 in
almost all local clients. We believe this is a balance between
local training and global fusion. With more significant data
heterogeneity, clients with less local data are more suscepti-
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Figure 7. The effect of different θ on UF1 and UAR.
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Figure 8. The effect of different α4 on UF1 and UAR.

ble to the influence of other clients, so a more personalised
training approach becomes effective.

Table 4. Comparison of UF1 and UAR for different values of α on
the DFME dataset.

α1 α2 α3 UF1 UAR

0.5 0.5 0.5 0.3701 0.3827
0.4 0.6 0.6 0.3698 0.3804
0.3 0.7 0.7 0.3715 0.3857
0.2 0.8 0.8 0.3853 0.3978
0.1 0.9 0.9 0.3744 0.3863

9.3. About Pre-training AU Moudle on DISFA and
CK

To further improve the model’s basic ability to perceive fa-
cial motion patterns, we first pre-trained the AU module

(i.e., the part of the network prior to the DSI module) on
the DISFA and CK datasets. The results showed that the
pre-trained model significantly outperformed the non-pre-
trained model, as shown in Tab. 5.

Table 5. Results on two datasets with and without the AU Group

Dataset Setting UF1 UAR

DFME Without Pre-train 0.3761 0.3891
With Pre-train 0.3853 0.3978

CAS(ME)3 Without Pre-train 0.5983 0.5959
With Pre-train 0.6221 0.6226
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