FakeRadar: Probing Forgery Outliers to Detect Unknown Deepfake Videos

Zhaolun Li! Jichang Li**
Xiaonan Luo?
'Guilin University of Electronic Technology

Guanbin Li3%5
2Pengcheng Laboratory

Junye Chen?
Rushi Lan’4*
3Sun Yat-sen University

Yingi Cai®

“Guangxi Key Laboratory of Image and Graphic Intelligent Processing
®Guangdong Key Laboratory of Big Data Analysis and Processing

zhaolunli@mails.guet.edu.cn, 1li.jichang@pcl.ac.cn, rslan2016@163.com

This supplementary material provides an extended ex-
perimental exploration and in-depth analysis of our pro-
posed model, FakeRadar. By thoroughly examining each
proposed component, we aim to gain a deeper understand-
ing of its impact and contributions to deepfake detection.
Furthermore, we present detailed experimental results and
comparative analyses to validate the effectiveness of Fak-
eRadar under various experimental settings. The pseudo-
code of FakeRadar is provided in Algorithm 1. The fol-
lowing sections outline the details of this study.

Effect of Model Variants on Deepfake Detection To
systematically evaluate the impact of different compo-
nents in FakeRadar (our full model, here we refer to as
“Proposed”), we design two model variants: FakeRadar
(Frozen), which directly employs a pre-trained CLIP [8]
ViT-B/16 encoder without fine-tuning; FakeRadar (Super-
vised), which introduces ST-Adapter [7] and binary classi-
fication, with parameter-efficient fine tuning.

As shown in Table I, the “Frozen” variant performs
poorly across all datasets, achieving only 55.2%-60.0%
AUC, demonstrating that pre-trained CLIP features alone
are insufficient for deepfake detection. The “Supervised”
variant, which incorporates ST-Adapter and binary clas-
sification, significantly improves performance, achieving
88.2% on CDFv2 [6] and 94.2% on DFD [9]. However,
its generalization remains limited when tested on unseen
datasets.

The “Proposed” FakeRadar model, trained with Forgery
Outlier Probing and Outlier-Guided Tri-Training, consis-
tently outperforms both baselines. It surpasses the “Su-
pervised” variant by 3.5% AUC on CDFv2, 3.7% on
DFDCP [2], and 5.8% on DFDC [3], highlighting that its
improved performance is attributed to the specialized train-
ing strategies rather than solely relying on a strong ViT-B
backbone.

*Corresponding Authors.
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Figure 1. Evolution of the number of clusters during training
in Forgery Outlier Probing (FOP). The experiment is conducted
training on the FF++(HQ) training set while evaluating on DFDC.

How Shocking Are the Subcluster Fluctuations in
Forgery Outlier Probing! In constructing the module of
Forgery Outlier Probing, we propose a process of dynamic
subcluster modeling, which involves the splitting and merg-
ing of subclusters. Using deepfake videos of “DFDC” from
the training set as a representative, we analyze the evolu-
tion of subcluster numbers across training epochs. Fig-
ure | illustrates the changes in the number of subclusters
constructed during each training epoch, beginning with the
initial cluster (where each manipulation type is treated as
a separate cluster, and all samples from “DFDC” are ini-
tially assigned to the same cluster). As shown, we observe
significant fluctuations in the number of subclusters during
the early training stages (Epochs 0-8). This indicates that
the model is still exploring the feature distribution of the
samples and gradually developing its ability to discriminate.
After approximately Epoch 10, the number of subclusters
stabilizes at three, suggesting that as training progresses,
the model’s capacity to discriminate the forgeries of clus-
ters improves.



Model Variant Architecture Input Type Training ‘ AUC (%)

Strategy ‘ FF++ CDF DFDCP DFDC DFD
FakeRadar (Frozen) ViT-B/16 Frame No Fine-tuning 552 60.0 59.0 55.2 574
FakeRadar (Supervised)  ViT-B/16+ST-Adapter Video Binary Classification | 98.2  88.2 84.8 78.3 94.2
FakeRadar (Proposed) ViT-B/16+ST-Adapter Video FOP+OGTT 929.1 917 88.5 84.1 96.2

Table 1. Comparison of different FakeRadar variants on cross-dataset generalization, evaluated using video-level AUC (%). The “Frozen”
variant uses the pre-trained CLIP model without fine-tuning, while the “Supervised” variant integrates ST-Adapter with binary classifi-
cation. The “Proposed” model further incorporates Forgery Outlier Probing (FOP) and Outlier-Guided Tri-Training (OGTT), leading to

significant improvements across all datasets.
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Figure 2. t-SNE [11] visualization of virtual feature-space outliers
generated by our Cluster-Conditional Outlier Generation. The
known subclusters (“Subcluster 17 and “Subcluster 2”) are derived
from NeuralTextures and encoded by CLIP’s visual encoder [8].

Visualization of Cluster-Conditional Outlier Genera-
tion. In this section, we visualize the virtual feature-
space outliers synthesized by our Cluster-Conditional Out-
lier Generation approach using t-SNE [11] (as shown in
Figure 2). The visualization involves two known subclus-
ters, labeled as “Subcluster 1” and “Subcluster 2”, extracted
from NeuralTextures and encoded using CLIP’s visual en-
coder [8]. Note that, as discussed in [4], these synthesized
outliers cannot be visualized in pixel space, as they are di-
rectly generated within a lower-dimensional feature space.
As shown in Figure 2, these virtual outliers clearly reside
near the boundaries of the known subclusters, demonstrat-
ing that synthesizing unseen forgeries helps the model cap-
ture novel forgery traces beyond those of existing real data
and known manipulations. This strategy thus significantly
enhances FakeRadar’s generalization ability in detecting
previously unseen deepfake videos.

Correcting Misclassifications in Deepfake Detection
with FakeRadar. To validate the overall effectiveness of
our proposed FakeRadar, we evaluate the impact of the core
components in detection performance of deepfake videos.
In our approach, the classifier is designed with three cat-
egories: “Real”, “Fake” and “Outlier”. During evaluat-
ing the model, we focus on how the triplet-class classifier
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Figure 3. Correction rate of misclassified “Fake” samples over
training epochs using the “Fake” + “Outlier” strategy. The curves
correspond to the correction rates on the FF++ test set [10] (with
the same manipulation patterns as training data) and the DFDC [3]
dataset (with different forgery traces from those deepfakes of train-
ing data). As training progresses, the correction rates for both
datasets initially increase and then decrease, indicating that the
model improves in distinguishing deepfake samples over time.
Evaluation of Outlier-Conditioned Cross-Entropy Loss on deep-
fake sample misclassification over training epochs. The model
is trained on the FF++(HQ) training set, while evaluating on the
FF++ test set and DFDC.

corrects misclassifications of deepfake samples, specifically
those misclassified as “Fake”, by reclassifying them into a
combined category of new “Fake” (denoted as “Fake” +
“Outlier”), as illustrated in Figure 3. In the experiment,
the model is trained using the FF++(HQ) training set and
evaluated on both the FF++ test set (which shares the same
manipulation patterns as deepfakes of the training data) and
the DFDC dataset (which contains different forgeries from
deepfakes in training set). Here, we calculate the propor-
tion of misclassified “Fake” samples that are subsequently
corrected by the strategy of “Fake” + “Outlier”.

As illustrated, the results show that during training, the
correction rates for both the FF++ test set and DFDC ini-
tially increase and then decrease. Specifically, around the
10-th epoch, the correction rates reach approximately 5%



Algorithm 1 FakeRadar’s Execution Process

Input: Video clips X = {z1,22,...,z,} from real
and fake categories
Initialize: Pretrained CLIP’s image encoder M, with
finetunable ST-Adapter

1: for each training iteration do

/] Step 1: Forgery Outlier Probing (FOP)

2: for each video clip z; € X do
3: Extract feature f(x;) using model M
4: Partition features into subclusters using GMM
5: Adjust subclusters through dynamical merging
and splitting strategies
6: end for
for each subcluster C), do
Generate outlier samples near the boundary of
subcluster C},
9: Simulate unseen forgeries by generating out-
liers in the feature space
10: end for
// Step 2: Outlier-Guided Tri-Training
11: Compute loss for each sample based on its proxim-
ity to subcluster centers
12: Apply to separate
different categories (Real, Fake, Outlier)
13: Apply to
optimize model decision boundaries
14: end for
// Step 3: Inference
15: for each test sample x¢.s; do
16: Extract features: f(Ziest)
17: Classify sample as either “Real”, “Fake”, or “Out-
lier” based on decision boundaries
18: if Sample is classified as Fake or Outlier then
19: Output: Fake
20: else
21: Output: Real
22: end if
23: end for

and 40%, respectively, before declining to about 3% and
10% at the last. These findings suggest that as the model’s
performance improves, its ability to discriminate deepfake
samples enhances, thereby reducing the need for corrective
reclassification.

Additionally, the similarity between the manipulation
type in a sample and those in training set significantly in-
fluences the outcomes of the “Fake” and “Fake” + “Out-
lier” categories. For samples with forgery types similar to
those in training data, the model assigns a high confidence
level through the “Fake” classifier, enabling the binary clas-

sifier (Real vs. Fake) to accurately classify the sample.
In these cases, the corrective effect of the “Fake” + “Out-
lier” strategy is limited. However, for samples with forgery
types differing from those in training data, the “Fake” clas-
sifier assigns a lower confidence level. In such cases, the
“Outlier” component substantially enhances prediction con-
fidence, effectively correcting misclassifications.

To sum up, our experimental results demonstrate the
following: (1) synthesizing “Outlier” samples to simulate
unseen forgeries effectively expands the model’s explo-
ration of unknown forgery types and corrects misclassifi-
cations within the “Fake” category, thereby validating the
effectiveness of our proposed Forgery Outlier Probing; (2)
compared to standard binary cross-entropy loss, our pro-
posed Outlier-Conditioned Cross-Entropy Loss offers supe-
rior performance by assigning a distinct category to outlier
samples, which compels the model to learn a more discrim-
inative decision boundary and prevents misclassification of
outliers as real samples; and (3) while the model’s inher-
ent discrimination ability improves during training, our ap-
proach remains effective, particularly for forgery types that
differ from those in training data, where the proposed strat-
egy yields more significant benefits.

Necessity of Dynamic Subcluster Modeling. The goal
of dynamic subcluster modeling is to uncover fine-grained
patterns within each forgery category. Due to variations in
source videos and manipulation techniques, each forgery
type typically contains multiple distinct subgroups. Treat-
ing these heterogeneous subgroups as a single cluster often
obscures low-confidence samples near category boundaries.
To address this, we propose the subclustering network,
which dynamically partitions coarse clusters with high dis-
persion into more coherent subclusters. Consequently, our
outlier generator can sample challenging outliers around
cluster boundaries, significantly enhancing the model’s gen-
eralization capability to unseen forgery types. To validate
the effectiveness of our proposed method, we design two
model variants for ablation analysis:

(1) A fixed-subcluster variant with K = 5, ef-
fectively disabling dynamic subcluster adjust-
ment and directly using cluster-conditional out-
lier generation.

(2) A variant trained without prior knowledge of
forgery subtypes, using only two labels (Real
and Fake), where all forgery subtypes are
merged into a single Fake class.

As shown in Table 2, the fixed-subcluster variant (M-(2))
achieves an average AUC of 87.4%, underperforming our
full FakeRadar model (M-(3), 90.1%) by 2.7%. This result
highlights that dynamically adapting the number of subclus-
ters (K) enables FakeRadar to better capture subtle intra-



M-(#) | Method | CDFv2 DFDCP DFDC DFD | Average

1 FakeRadar (no prior) 91.6 88.1 83.1 95.3 89.5
2 FakeRadar (fixed K = 5) 90.0 88.3 820 94.1 87.4
3 FakeRadar (Ours) 91.7 88.5 84.1 96.2 90.1

Table 2. Ablation analysis of FakeRadar with different subcluster
modeling strategies. Results reported in AUC (%). The best results
are shown in bold.

Method \ Saturation  Contrast  Block  Noise  Blur \ Average
AltFreezing [12] -0.4 -0.9 -8.0 -38.9 -1.5 -9.9
StyleFlow [1] -0.4 -3.8 7.4 -44.6 -2.3 -11.7
FakeRadar (Ours) -1.3 -0.9 -0.2 -27.9 -7.8 -7.6

Table 3. Robustness evaluation of FakeRadar and comparison
methods under various perturbations, measured by average AUC
drop (%). Best results are highlighted in bold.

category variations, thus significantly improving general-
ization to unseen forgery types. Moreover, removing fine-
grained subtype information only slightly reduces the cross-
domain accuracy from 90.1% to 89.5% (M-(3) — M-(1)).
This indicates that FakeRadar can still effectively generalize
without forgery-specific labels, although incorporating de-
tailed subtype information provides additional performance
gains.

Model Robustness to Unseen Perturbations. Following
prior work [5], we train our model on the FF++ (HQ) dataset
and evaluate its robustness across various unseen perturba-
tions at different severity levels. These perturbations in-
clude saturation changes, contrast adjustments, block-wise
masking, Gaussian noise, and image compression. Robust-
ness is measured by the average drop in AUC scores, as de-
tailed in Table 3. Overall, our proposed FakeRadar demon-
strates strong robustness on average across different pertur-
bations compared to other algorithms. Notably, FakeRadar
significantly outperforms competing methods under Gaus-
sian noise (average AUC drop: —27.9%) and block-wise
masking (average AUC drop: —0.2%), highlighting its su-
perior resilience against challenging corruptions.
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