Few-Shot Image Quality Assessment via Adaptation of Vision-Language Models
- Supplementary Material -

1. Appendix Overview

The supplementary material is organized as follows:
Sec. 2 shows more training details in various BIQA set-
tings. Sec. 3 provides more performance cooperation on
the Al-generated BIQA dataset. Sec. 4 provides Zero-shot
performance cooperation with other zero-shot BIQA meth-
ods. Sec. 5 provides more ablation and performance com-
parisons. Sec. 6 offers a detailed qualitative analysis of the
gMAD competition.

2. Training Details

In the fully supervised setting, we provide addi-
tional details on the training preprocessing for various
datasets—LIVE [22], CSIQ [11], TID2013 [20], KA-
DID [14], LIVEC [3], KonlQ [8], LIVEFB [30], and
SPAQ [2]—in Table 1, which were not included in the main
paper. We used different training settings for each bench-
mark to ensure a fair comparison. In the data-efficient learn-
ing setup, no additional data enhancements were applied.
The training images were simply resized to a resolution of
224x224, with the number of visual prompts set to 100 and
the length of learnable vectors for text prompts set to 4.

Dataset Resolution Resize Batch Size Label Range
LIVE 768 x 512 512 x 384 12 DMOS [0,100]
CSIQ 512 x 512 512 x 512 12 DMOS [0,1]
TID2013 512 x 384 512 x 384 48 MOS [0,9]
KADID 512 x 384 512 x 384 128 MOS [1,5]
LIVEC 500P ~ 640P 500P ~ 640P 16 MOS [1,100]
KonlQ 768P 512 x 384 128 MOS [0,5]
LIVEFB 160P ~ 700P 512 x 512 128 MOS [0,100]
SPAQ  1080P ~ 4368P 512 x 384 128 MOS [0,100]

Table 1. Training preprocessing details of BIQA datasets.

3. Results on Al-generated BIQA dataset

3.1. Dataset Protocol

AGIQA-1K: The AGIQA-1K [33] dataset is the inaugural
collection specifically created for assessing the perceptual
quality of Artificial General Intelligence (AGI) and includes

1,080 images produced by diffusion models. Researchers
gathered subjective quality ratings for these images through
experimental evaluations and conducted benchmarks to test
how well current image quality assessment models per-
form. The dataset features a diverse set of images depicting
various subjects, including birds, cats, bats, children, and
adults, showcasing its variety and complexity.
AGIQA-3K: The AGIQA-3K [12] dataset is an open
database designed for the assessment of Al-generated im-
age quality, comprising 2,982 images produced by six dis-
tinct models. The test model is divided into three groups:
Loss-function models, SVR-based models, and DL-based
models. These models use various methods to assess im-
age quality. The DL-based group includes the latest deep
learning metrics such as DBCNN [32], CLIPIQA [26], CN-
NIQA [9], and HyperNet [24], which characterize quality
perception information by training deep neural networks.
The dataset is randomly split into an 80/20 training and test-
ing set, ensuring that images with the same object labels are
grouped. The evaluation process is repeated 10 times to re-
duce performance bias. We report the average of SRCC,
KRCC and PLCC to quantify the model’s performance in
terms of prediction accuracy and monotonicity.

3.2. Experiment Results

In this section, we showcase the performance of our
model on the recent aigc-iqa dataset. Specifically, we chose
the A value of 0.5 and conducted ten experiments to obtain
the average while also reporting the performance of main-
stream methods on the AGIQA-1K and AGIQA-3K subsets.
For the comparison models, we either directly use the pub-
licly available implementation results or re-train them on
our datasets using the open-source training codes.

Results on AGIQA-1K database. Table 2 displays the
performance of our method alongside existing methods on
the AGIQA-1K database and two subsets. The handcrafted
IQA methods do not perform satisfactorily in assessing
AGIs due to the prior knowledge from NSIs being unsuit-
able for Al-generated BIQA datasets, highlighting the dis-
parities between scenes. Our framework reaches SOTA per-
formance under existing methods, demonstrating the supe-
riority of our proposed meta-learning in rapidly adapting



Metric \ Database \ ALL | stable-inpainting-vl | stable-diffusion-v2
\ Corr | SRCC  KRCC PLCC | SRCC KRCC PLCC | SRCC KRCC PLCC
BMPRI [17] 0.0651  0.0400 0.1646 | 0.3746 0.2643 0.4094 | -0.0158 -0.0112 -0.0111
Hand CEIQ [29] 0.3069 02097  0.2836 | 0.2348 0.1607 0.2000 | 0.1314  0.0898  0.1392
crafted- based DSIQA [19] -03047  -0.2148 -0.0559 | 0.0428 0.0241 0.4106 | 0.0046 0.0041  0.0184
NIQE [18] -0.5490 -0.3824 -0.5048 | 0.0414 0.0240 0.0712 | -0.2275 -0.1564 -0.2392
friquee [4] 0.4938 03469  0.4192 | 04231 03024 0.3989 | 0.1783  0.1244  0.2069
Handerafted&: GMLF [28] 0.5575 04052  0.6356 | 0.5062 03649 0.6167 | 0.1501  0.1039  0.1713
SVR.based | HIGRADE[I0] | 04056 02860 04425 | 02493 01732 02886 | 0.1358 0.0943  0.1308
NFERM [6] 04540  0.3224 05396 | 0.3874 0.2743 04901 | 0.1193  0.0817  0.1474
NFSDM 5] 04314 03055 04714 | 0.3840 0.2743 04576 | 0.1002  0.0690  0.0911
ResNet50 [7] 0.6365  0.4777  0.7323 | 0.6000 0.4485 0.7728 | 0.3961  0.2785  0.4739
Deep StairlQA [25] | 0.5504  0.4039  0.6088 | 0.4669 0.2519 0.5050 | 0.3486 0.2519  0.4186
learning MGQA [27] 0.6011  0.4456  0.6760 | 0.5618 0.4250 0.7206 | 0.3715 0.2584  0.3593
-based DEIQT [21] 0.8309 0.6475 0.8651 | 0.7791 0.5975 0.8164 | 0.5129 0.3617  0.5345
GMRP-IQA (ours) | 0.8354 0.6614  0.8883 | 0.8168 0.6366 0.8386 | 0.6699 0.4848  0.6785

Table 2. Performance results on the AGIQA-1k database and two different generative model subsets. The bold entries indicate the best

results, and underlines indicate the second-best.

Metric ‘ ALL ‘ Bad Model ‘ Medium Model ‘ Good Model

| SRCC KRCC PLCC | SRCC KRCC PLCC | SRCC KRCC PLCC | SRCC KRCC PLCC

DSIQA [19] | 0.4955 0.3403 0.5488 | 0.1908 0.1331 0.3139 | 0.2140 0.1469 0.3655 | 0.1665 0.1120 0.2520
NIQE[18] | 0.5623 0.3876 0.5171 | 0.2031 0.1354 0.3309 | 0.2259 0.1483 0.2526 | 0.1750 0.1172 0.2533
DBCNN [32] | 0.8207 0.6336 0.8759 | 0.5520 0.3958 0.6825 | 0.5011 0.3531 0.5575 | 0.4288 0.2975 0.4853
CLIPIQA [26] | 0.8426 0.6468 0.8053 | 0.1882 0.1255 0.2549 | 0.6537 0.4693 0.6014 | 0.5038 0.3407 0.5081
CNNIQA [9] | 0.7478 0.5580 0.8469 | 0.3233 0.2275 0.4547 | 0.4278 0.2807 0.4534 | 03952 0.2805 0.4517
HyperNet [24] | 0.8355 0.6488 0.8903 | 0.5086 03628 0.5985 | 0.4687 0.3260 0.5480 | 0.5562 0.3927 0.6149
DEIQT [21] | 0.8501 0.6684 0.9054 | 0.6449 0.4785 0.7363 | 0.5664 0.4033 0.7054 | 0.7886 0.5998 0.8420
GRMP-IQA | 0.8799 0.7039  0.9202 | 0.6824 0.5129 0.7533 | 0.6742 0.4917 0.7909 | 0.8101 0.6273 0.8587

Table 3. Perceptual metric performance results on AGIQA-3k database and different subsets of different T2I AGI models. The bold entries

indicate the best results, and underlines indicate the second-best.

CLIP to various IQA scenarios. Moreover, in the stable-
diffusion-v2 subset, which utilizes more keywords, we sub-
stantially surpass the mainstream method DEIQT [21], in-
dicating that our proposed gradient-regulated framework is
better tailored for downstream IQA tasks rather than be-
ing confined to generalized semantic knowledge. There-
fore, GRMP-IQA surpasses all other methods in terms of
performance despite the wide range of image content and
distortion types.

Results on AGIQA-3K database. For the AGIQA-3k
dataset, to analyze the evaluation consistency of percep-
tion models, we categorize Al-generated images into three
groups: bad, medium, and good models. The specific per-
formances are presented in Table 3. Compared to traditional
handcrafted feature-based methods such as DSIQA [19]
and NIQE [18], deep learning models more closely mir-
ror the human visual system, with our method outper-
forms all other deep learning models. Notably, CLIP-

IQA [26] is challenged in performance when dealing with
more distortion in the Bad Model subset, reflecting how
CLIP’s general knowledge can misclassify quality knowl-
edge. DBCNN [32], CNNIQA [9], and HyperNet [24] all
perform equally poorly in the Medium Model subset, indi-
cating that traditional CNN-based feature extraction meth-
ods are ineffective at learning quality information from im-
ages with subtle quality traits. Although DEIQT extracts
features more effectively, transformer-based methods are
designed for classification rather than quality information.
Overall, our proposed GMRP-IQA framework effectively
addresses these issues.

4. Zero-Shot Performance

Zero-shot methods refer to training that occurs with-
out human supervision. Consequently, we compared the
performance of our GMRP-IQA with unsupervised BIQA
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Figure 1. Cosine similarity between visual and textual prompts under different perspectives: (a) and (b) analyze from a visual-to-text
perspective, and (c) from a text-to-visual perspective. After implementing visual-text prompts, there has been an enhancement in the
model’s ability to discriminate image quality, highlighting that the integration of Visual-Text Prompts is harmonious and efficient.

Method LIVEC KonlQ CSIQ LIVE PIPAL
NIQE [18] 0.463 0.530 0.613 0.836 0.153
IL-NIQE [31] 0.440 0.507 0.814 0.847 0.282
CL-MI [1] 0.507 0.645 0.588 0.663 0.303
CLIP-IQA [26] 0.612 0.700 0.690 0.652 0.261
GRepQ [23] 0.740 0.768 0.693 0.741 0.436
GRMP-IQA  0.770 0.713 0.781 0.911 0.450

Table 4. SRCC performance comparison of GRMP-IQA (zero-
shot) with other zero-shot methods on various IQA databases.

methods such as NIQE [18], IL-NIQE [31], contrastive
learning based on mutual information (CL-MI) [1] and
CLIP-IQA [26], alongside the self-supervised pre-trained
GRepQ [23]. We evaluated all methods using the entire
assessment database. As Table 4 indicates, GMRP-IQA
ranked in the top two across five datasets, notably out-
performing other methods by a significant margin on the
LIVEC and LIVE datasets. Particularly, it demonstrated
a notable performance lead over the similarly Vision-
Language Model-based CLIP-IQA method, with improve-
ments reaching up to 25.9 percentage points. GMRP-
IQA also achieved state-of-the-art (SOTA) performance
on the challenging PIPAL dataset, which includes various
distortions, especially images that have undergone super-
resolution and denoising through various restoration meth-
ods, including those based on GANs. It is important to
note that the model performed slightly less effectively on
the larger real-world dataset, KonlQ. We attribute this to
the pre-trained CLIP model’s inherent bias towards seman-
tic information, which still affects its ability to assess image
quality in a zero-shot setting. This underscores the value of
our proposed quality-aware gradient regularization (QGR)
during few-sample fine-tuning, with QGR ablation studies
in our manuscript confirming its significant gains on KonlQ.

5. More Ablation Results

5.1. Effect of Visual-Text Prompt

Considering the domain differences between upstream
pre-training tasks and downstream IQA tasks, the image
encoder tends to encode semantic information rather than
quality-related information. This inclination can potentially
affect the alignment with the textual component, thereby
impacting the model’s final quality prediction, as the ulti-
mate quality assessment is inferred collaboratively by the
text and image branches. To address this, we introduce a vi-
sual prompt to complement the text prompt. In this section,
we further analyze their synergistic relationship.

As illustrated in Figure 1, we analyze the cosine sim-
ilarity between visual and textual prompts from two per-
spectives: (1) from a visual-to-text direction and (2) from a
text-to-visual direction. For the first perspective (Fig. 1 (a)
and (b)), we visualized the similarity matrix between the
visual soft prompts and both soft and hard textual prompts.
It is evident that the quality discrimination produced by the
hard textual prompts in conjunction with learnable visual
prompts is ambiguous, meaning that the prediction proba-
bilities for high and low image quality are extremely close.
In contrast, soft textual prompts, when used together with
visual prompts, can yield more discriminative quality judg-
ments. For the second perspective (Figure 1 (c)), we visual-
ized the similarity between the [cls] token with and without
visual soft prompts in response to soft text prompts. The
observations suggest a similar phenomenon where, without
the support of visual soft prompts, the [cls] token strug-
gles to adapt to soft text prompts. This further corroborates
the need for appropriate adjustments in the visual encoder
to address the domain discrepancies between upstream and
downstream tasks. In summary, our Visual-Text Prompt in-
tegration is harmonious and efficient, significantly enhanc-
ing the ability of the CLIP model to adapt to IQA tasks.



Prompt Length LIVEC KonlQ
PLCC SRCC PLCC SRCC
M=4 0.867 0.836 0.880 0.853
M=16 0.874 0841 0.870 0.842

Table 5. Performance comparison for different prompt lengths.

Method  Training Ratio SPAQ KonlQ
PLCC SRCC PLCC SRCC
Q-Align 20% 0911 0909 0.901 0.903
Ours 20% 0.925 0920 0.931 0915
Q-Align 80% 0.933  0.930 0.941 0.940
Ours 80% 0932 0927 0945 0.934

Table 6. Performance comparison with Q-Align in terms of PLCC
and SRCC under varying training data ratios.

5.2. Ablation of text prompt length

Drawing on empirical findings [13, 34], we uniformly
set the prompt length to 4 (M=4) to balance performance
and efficiency, as shown in Table 5. The results reveal that
the optimal prompt length varies across datasets, indicat-
ing that increasing M from 4 to 16 improves performance
on the LIVEC dataset, yet reduces KonlQ’s PLCC. This
divergence suggests dataset-specific adaptability of prompt
length. While M=4 offers a balanced choice, adjusting it
per dataset could optimize performance further.

5.3. Comparsion with the Q-Align.

Our method differs from Q-Align in two key aspects.
First, while Q-Align fine-tunes numerous parameters (in-
cluding the LLM), we use prompt tuning—this significantly
reduces the data needed to adapt large models to IQA tasks.
Second, we explicitly explore the connection between IQA
and high-level vision tasks, which further alleviates seman-
tic overfitting. Notably, GRMP-IQA outperforms Q-Align
when using just 20% of the training data, and remains com-
petitive even with the full dataset. Detailed results are re-
ported in Table 6.

6. Qualitative Analysis

To further assess our framework’s generalization, we
trained models on the entire LIVE database and then tested
them using the gMAD competition [16] on the Waterloo
Database [15]. gMAD efficiently selects image pairs with
maximum quality difference predicted by an attacking IQA
model to challenge another defending model which consid-
ers them to be of the same level of quality. The selected
pairs are shown to the observer to determine whether the at-
tacker or the defender is robust. As shown in Fig. 2, In the
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Figure 2. gMAD results between DEIQT [21] and ours. (a) Fixed
DEIQT at low quality. (b) Fixed DEIQT at high quality. (c) Fixed
ours at low quality. (d) Fixed ours at high quality.

first two columns, our model attacks the competing method
DEIQT, where each column represents images chosen from
the poorer and better quality levels predicted by the de-
fender. In the last two columns, we fix our model as the
defender, giving image pairs selected from poorer and bet-
ter quality levels, respectively. From Fig. 2, it is evident
that when our model serves as the defender, the image pairs
chosen by the attacker show little perceptual quality change,
whereas, as the attacker, our model selects image pairs with
more significant quality differences in succession. This in-
dicates that the model has strong defensive and offensive
capabilities. Additionally, it is important to highlight that
the image pairs in the second column, which share similar
semantic information, misled the DEIQT into classifying
them as similar quality. Conversely, our model effectively
identified the quality differences between them. These find-
ings underscore the strong generalization capability of our
model in tackling complex distortions in real-world images.

References

[1] Nithin C Babu, Vignesh Kannan, and Rajiv Soundararajan.
No reference opinion unaware quality assessment of authen-
tically distorted images. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision,
pages 2459-2468, 2023. 3

[2] Yuming Fang, Hanwei Zhu, Yan Zeng, Kede Ma, and Zhou
Wang. Perceptual quality assessment of smartphone photog-
raphy. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 3677-3686,
2020. 1

[3] Deepti Ghadiyaram and Alan C Bovik. Massive online
crowdsourced study of subjective and objective picture qual-
ity. IEEE Transactions on Image Processing, 25(1):372-387,
2015. 1

[4] Deepti Ghadiyaram and Alan C Bovik. Perceptual quality
prediction on authentically distorted images using a bag of
features approach. Journal of vision, 17(1):32-32,2017. 2



(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

[14]

[15]

(16]

[17]

Ke Gu, Guangtao Zhai, Xiaokang Yang, Wenjun Zhang, and
Longfei Liang. No-reference image quality assessment met-
ric by combining free energy theory and structural degrada-
tion model. In 2013 IEEE International Conference on Mul-
timedia and Expo (ICME), pages 1-6. IEEE, 2013. 2

Ke Gu, Guangtao Zhai, Xiaokang Yang, and Wenjun Zhang.
Using free energy principle for blind image quality assess-
ment. I[EEE Transactions on Multimedia, 17(1):50-63, 2014.
2

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770-778, 2016. 2

Vlad Hosu, Hanhe Lin, Tamas Sziranyi, and Dietmar Saupe.
Konig-10k: An ecologically valid database for deep learning
of blind image quality assessment. [EEE Transactions on
Image Processing, 29:4041-4056, 2020. 1

Le Kang, Peng Ye, Yi Li, and David Doermann. Convolu-
tional neural networks for no-reference image quality assess-
ment. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1733-1740, 2014. 1, 2
D Kundu, D Ghadiyaram, AC Bovik, and BL Evans. Large-
scale crowdsourced study for high dynamic range images.
IEEE Trans. Image Process, 26(10):4725-4740, 2017. 2
Eric Cooper Larson and Damon Michael Chandler. Most
apparent distortion: full-reference image quality assessment
and the role of strategy. Journal of electronic imaging, 19
(1):011006, 2010. 1

Chunyi Li, Zicheng Zhang, Haoning Wu, Wei Sun,
Xiongkuo Min, Xiaohong Liu, Guangtao Zhai, and Weisi
Lin. Agiqa-3k: An open database for ai-generated image
quality assessment. /[EEE Transactions on Circuits and Sys-
tems for Video Technology, 2023. 1

Zhexin Liang, Chongyi Li, Shangchen Zhou, Ruicheng
Feng, and Chen Change Loy. Iterative prompt learning for
unsupervised backlit image enhancement. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 8094-8103, 2023. 4

Hanhe Lin, Vlad Hosu, and Dietmar Saupe. Kadid-10k:
A large-scale artificially distorted iqa database. In 2079
Eleventh International Conference on Quality of Multimedia
Experience (QoMEX), pages 1-3. IEEE, 2019. 1

Kede Ma, Zhengfang Duanmu, Qingbo Wu, Zhou Wang,
Hongwei Yong, Hongliang Li, and Lei Zhang. Waterloo ex-
ploration database: New challenges for image quality assess-
ment models. IEEE Transactions on Image Processing, 26
(2):1004-1016, 2016. 4

Kede Ma, Qingbo Wu, Zhou Wang, Zhengfang Duanmu,
Hongwei Yong, Hongliang Li, and Lei Zhang. Group mad
competition-a new methodology to compare objective im-
age quality models. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1664—
1673, 2016. 4

Xiongkuo Min, Guangtao Zhai, Ke Gu, Yutao Liu, and Xi-
aokang Yang. Blind image quality estimation via distor-
tion aggravation. [EEE Transactions on Broadcasting, 64
(2):508-517, 2018. 2

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

(29]

(30]

Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. Mak-
ing a “completely blind” image quality analyzer. /IEEE Sig-
nal processing letters, 20(3):209-212, 2012. 2, 3

Niranjan D. Narvekar and Lina J. Karam. A no-reference
perceptual image sharpness metric based on a cumulative
probability of blur detection. In 2009 International Work-
shop on Quality of Multimedia Experience, pages 87-91,
2009. 2

Nikolay Ponomarenko, Lina Jin, Oleg Ieremeiev, Vladimir
Lukin, Karen Egiazarian, Jaakko Astola, Benoit Vozel,
Kacem Chehdi, Marco Carli, Federica Battisti, et al. Im-
age database tid2013: Peculiarities, results and perspectives.
Signal processing: Image communication, 30:57-77, 2015.
1

Guanyi Qin, Runze Hu, Yutao Liu, Xiawu Zheng, Haotian
Liu, Xiu Li, and Yan Zhang. Data-efficient image quality as-
sessment with attention-panel decoder. In Proceedings of the
Thirty-Seventh AAAI Conference on Artificial Intelligence,
2023. 2,4

Hamid R Sheikh, Muhammad F Sabir, and Alan C Bovik.
A statistical evaluation of recent full reference image quality
assessment algorithms. [EEE Transactions on image pro-
cessing, 15(11):3440-3451, 2006. 1

Suhas Srinath, Shankhanil Mitra, Shika Rao, and Rajiv
Soundararajan. Learning generalizable perceptual represen-
tations for data-efficient no-reference image quality assess-
ment. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 22-31, 2024. 3
Shaolin Su, Qingsen Yan, Yu Zhu, Cheng Zhang, Xin Ge,
Jingiu Sun, and Yanning Zhang. Blindly assess image qual-
ity in the wild guided by a self-adaptive hyper network. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 3667-3676, 2020. 1,
2

Wei Sun, Huiyu Duan, Xiongkuo Min, Li Chen, and Guang-
tao Zhai. Blind quality assessment for in-the-wild images
via hierarchical feature fusion strategy. In 2022 IEEE Inter-
national Symposium on Broadband Multimedia Systems and
Broadcasting (BMSB), pages 01-06. IEEE, 2022. 2

Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Ex-
ploring clip for assessing the look and feel of images. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
pages 2555-2563,2023. 1,2, 3

Tao Wang, Wei Sun, Xiongkuo Min, Wei Lu, Zicheng
Zhang, and Guangtao Zhai. A multi-dimensional aesthetic
quality assessment model for mobile game images. In 2021
International Conference on Visual Communications and
Image Processing (VCIP), pages 1-5. IEEE, 2021. 2
Wufeng Xue, Xuanqin Mou, Lei Zhang, Alan C Bovik,
and Xiangchu Feng. Blind image quality assessment using
joint statistics of gradient magnitude and laplacian features.
IEEE Transactions on Image Processing, 23(11):4850-4862,
2014. 2

Jia Yan, Jie Li, and Xin Fu. No-reference quality assess-
ment of contrast-distorted images using contrast enhance-
ment. arXiv preprint arXiv:1904.08879, 2019. 2

Zhengiang Ying, Haoran Niu, Praful Gupta, Dhruv Maha-
jan, Deepti Ghadiyaram, and Alan Bovik. From patches to



(31]

(32]

(33]

[34]

pictures (paq-2-piq): Mapping the perceptual space of pic-
ture quality. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3575—
3585, 2020. 1

Lin Zhang, Lei Zhang, and Alan C Bovik. A feature-enriched
completely blind image quality evaluator. IEEE Transactions
on Image Processing, 24(8):2579-2591, 2015. 3

Weixia Zhang, Kede Ma, Jia Yan, Dexiang Deng, and Zhou
Wang. Blind image quality assessment using a deep bilinear
convolutional neural network. [EEE Transactions on Cir-
cuits and Systems for Video Technology, 30(1):36-47, 2018.
1,2

Zicheng Zhang, Chunyi Li, Wei Sun, Xiaohong Liu,
Xiongkuo Min, and Guangtao Zhai. A perceptual quality
assessment exploration for aigc images. In 2023 IEEE In-
ternational Conference on Multimedia and Expo Workshops
(ICMEW), pages 440-445. 1IEEE, 2023. 1

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei
Liu. Learning to prompt for vision-language models. In-
ternational Journal of Computer Vision, 130(9):2337-2348,
2022. 4



	Appendix Overview
	Training Details
	Results on AI-generated BIQA dataset
	Dataset Protocol
	Experiment Results

	Zero-Shot Performance
	More Ablation Results
	Effect of Visual-Text Prompt
	Ablation of text prompt length
	Comparsion with the Q-Align.

	Qualitative Analysis

