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Object (w/o non-rigid deform): A rhinoceros … Material: A stone elephant …

Object (w non-rigid deform): A jeep … Add: An elephant wearing a hat …

Color: A blue elephant … Remove: An elephant …

Source Video 
Caption: An elephantis walking  across a rocky enclosure in a zoo…
Prompt1: A rhinoceros is walking across…
Instruct1: Change the elephant to rhinoceros
Prompt2: A jeep is moving across …
Instruct2: Change the elephant to jeep
Prompt3: A blue elephant is walking …
Instruct3: Make the elephant blue.
Prompt4: A stone elephant is walking …
Instruct4: Make the elephant stone.
Prompt5: An elephant wearing a hat …
Instruct5: Add a hat to the elephant.
Prompt6: No elephant in a zoo …
Instruct6: Remove the elephant

Masks:
FiVE-Bench
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FiVE-Acc:[1,0,1,0]à 0.5

FiVE-Acc:[1,1,1,1]à 1

FiVE-Acc:[1,1,1,1]à 1

FiVE-Acc:[0,0,0,0] à 0

FiVE-Acc:[0,0,0,0] à 0

FiVE-Acc:[1,1,1,1] à 1

CLIP Score:0.90

CLIP Score:0.57

CLIP Score:0.72

CLIP Score:0.46

CLIP Score:0.89

CLIP Score:0.84

Human:

Human:

Human:

Human:

Human:

Human:

Figure 1. Overview of the proposed FiVE-Bench, with editing results from Wan-Edit and corresponding FiVE-Acc scores.

In this supplementary file, we provide the following ma-
terials:
• Additional details on baseline methods
• Expanded implementation details
• Further explanation of the FiVE benchmark
• Human preference validation
• GPU memory usage and speed comparison
• Additional quantitative results and analysis
• Additional qualitative results and analysis

A. Baseline Methods
• TokenFlow [2] is a training-free framework for consistent

video editing that leverages diffusion features by enforc-
ing cross-frame semantic token alignment in latent space
to preserve spatiotemporal coherence. By propagating
consistent appearance and motion patterns through op-

*Equal contribution, † Corresponding author.

timized token interactions in a pre-trained text-to-image
model, it achieves temporally stable edits without requir-
ing additional fine-tuning or annotated data.

• DMT [9] is a zero-shot framework for text-driven human
motion transfer that leverages spatiotemporal diffusion
features to align source motion patterns with target tex-
tual descriptions in a unified latent space. By integrating
cross-modal attention mechanisms and temporal coher-
ence constraints within a pre-trained diffusion model, it
enables realistic motion synthesis without requiring task-
specific training or paired data, ensuring both semantic
fidelity and dynamic consistency.

• VidToME [5] is a zero-shot video editing framework that
enhances spatiotemporal consistency by adaptively merg-
ing redundant tokens across frames within a pre-trained
diffusion model. This token-efficient strategy preserves
critical motion and appearance features while reducing
computational overhead, enabling coherent video edits
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Table 1. Comparison of different video editing methods for DM and RF models under default settings.

Methods Publication
Inv. Attention Base T2I/V

Inv.-free Resolution
Timesteps

Conditions
Type Injection Model Inv.+Edit

DMs

TokenFlow ICCV23 DDIM ✓ SD2.1 ✗ (512, 512) 500 + 50 ✗

DMT CVPR24 DDIM ✗ ZeroScope ✗ (576, 320) 1000 + 50 Optimization
Vidtome CVPR24 PnP ✓ SD1.5 ✗ (512, 512) 50 + 50 ✗

AnyV2V TMLR24 PnP ✓ I2VGen-XL ✗ (512, 512) 500 + 50 InstrctPix2Pix
VideoGrain ICLR25 DDIM ✓ SD1.5 ✗ (512, 512) 50 + 50 Depth + Mask

RFs
Pyramid-Edit Ours FlowEdit ✗ Pyramid-Flow ✓ (640, 384) 40 ✗

Wan-Edit Ours FlowEdit ✗ Wan2.1 ✓ (832, 480) 50 ✗

…

…

GPT-4o

Human
Justification

Wan2.1

Remove

Object
w/o non-rigid

Add

Material

Color

Object
w non-rigid

A bicycle is rolling 
steadily along a 
cobblestone street, with 
historic buildings and 
flower boxes lining the 
road. The camera 
remains fixed, capturing 
the bicycle's smooth 
motion.

An elephant is walking 
slowly across a rocky 
enclosure in a zoo, with 
dust rising around its 
feet. The camera 
remains fixed, capturing 
the elephant's steady 
movement against the 
backdrop of trees and a 
building.
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Figure 2. FiVE-Benchmark construction pipeline, involving the collection of real-world videos, the generation of captions for these videos,
the creation of synthetic video-caption pairs, and the generation of editing prompts.

without task-specific training or temporal-aware fine-
tuning.

• AnyV2V [4] is a tuning-free framework designed for uni-
versal video editing tasks, leveraging spatiotemporally
consistent diffusion features through cross-frame latent
propagation to maintain coherence across diverse editing
operations. By dynamically aligning semantic and mo-
tion patterns in pre-trained diffusion models without task-
specific tuning, it enables flexible video-to-video trans-
formations while preserving temporal stability and vi-
sual fidelity. For prompt-based editing, it uses Instruct-
Pix2Pix [1] to edit the first frame first.

• VideoGrain [8] is a video editing framework that en-
ables multi-grained control through hierarchical space-
time attention modulation, dynamically adjusting spa-
tial and temporal feature interactions in diffusion mod-

els to achieve precise edits across varying granularities.
By decomposing and recombining cross-frame attention
patterns at different resolution scales, it maintains tem-
poral coherence and visual fidelity while supporting di-
verse editing tasks without requiring architectural modi-
fications or task-specific fine-tuning.

B. Implementation Details
All experiments were conducted using the official GitHub
repository and environment, with default settings. For
training-free methods, the editing results are highly depen-
dent on hyperparameters, such as in PNP [7]. To minimize
the impact of hyperparameters, we randomly selected six
videos from our benchmark and performed a search within
an appropriate parameter range to find the best hyperparam-
eters. These were then fixed for all subsequent data in the



benchmark. All experiments were run on a single H100
GPU. Table 1 lists the parameter settings for the compared
methods and our proposed approach.

For VLM-based FiVE-Acc evaluation, QWen2.5-VL-7B
is selected as the evaluation model. We sample one frame
every 8 frames from the edited video, selecting a total of
5 evenly spaced frames from a 40-frame video, which are
then fed into the vision encoder of QWen2.5-VL. The text
input consists of Yes/No questions or multiple-choice ques-
tions, as illustrated in Fig. 2 of the main paper. Considering
the varying number of videos across different editing types,
we compute the FiVE-Acc metric separately for each type.
The final FiVE benchmark score is obtained by averaging
the scores across all six editing types, as presented in Table
3 of the main paper. The evaluation codebase is available
at: https://sites.google.com/view/five-
benchmark.

C. FiVE Benchmark
The construction of the FiVE-Benchmark involves the col-
lection of real-world videos, the generation of captions for
these videos, the creation of synthetic video-caption pairs,
and the generation of editing prompts. The overall pipeline
is illustrated in Fig. 2.

C.1. Video-description Pair Construction.
We begin by selecting real-world videos from the DAVIS
dataset [6] that are well-suited for fine-grained video edit-
ing. For each chosen video, we use GPT-4o [3] to gen-
erate detailed annotations every 8th frame, capturing key
elements such as subject actions, background details, and
camera movements. Next, we create new annotations in the
style of real video descriptions, which are then used to guide
a text-to-video model in generating new videos. The full
process and examples of generated caption-video pairs are
shown in Fig. 3. In this process, human justification is in-
volved in assessing the quality of both the videos and their
descriptions to ensure the generation of high-quality video-
description pairs.

C.2. Editing Prompt Generation
For the constructed video-caption pairs, we design special-
ized prompts to generate target editing instructions for six
editing types. GPT-4o is employed to create new video cap-
tions by modifying the original captions based on the target
object, serving as the target prompts for the editing process.
Fig. 4 provides an example of the prompt and its corre-
sponding output for generating an editing type instruction.

C.3. FiVE-Acc Question Generation
The FiVE benchmark provides both the source object (the
object in the original video) and the target object (the object
after editing). Based on this information, we use GPT-4o to

generate Yes/No questions and Multiple-choice questions,
as illustrated in Fig. 5. To improve question quality, the user
prompts for GPT-4o are customized according to the edit-
ing type, and all generated questions are manually reviewed
for accuracy. These questions are then used to assess the
success rate of video editing methods, serving as the foun-
dation for the FiVE-Acc metric.

D. Human Preference Validation

To ensure the reliability and perceptual alignment of our
evaluation protocol, we conduct comprehensive human
preference validation on three aspects: the proposed FiVE-
Acc metric, the compared editing methods, and the quality
of segmentation masks.

Human validation of the FiVE-Acc metric. In Fig. 6
(left), we conducted a human study on 16 randomly sam-
pled videos with 64 prompts. As shown in Table ?? of
the main paper, the overall FiVE-Acc score derived from
human judgments (47.34%) closely aligns with the auto-
matic evaluation by Qwen-2.5-VL (46.97%), showing only
a marginal difference of +0.37%. This strong agreement
suggests that the proposed FiVE-Acc metric is well-aligned
with human perception.

Human preference across editing methods. In Fig. 6
(central), we randomly sample 11 videos, resulting in 45
source–target prompt pairs. The seven methods included
in the study correspond to those listed in Table 2 (methods
a–g) of the main paper. To reduce bias, the order of meth-
ods is randomized. Annotators are asked to select their top-
2 preferred results per prompt, and the aggregated votes are
used to compute preference statistics in Fig. 7. The left pie
chart shows the percentage of times each method was se-
lected as the Top-1 only preference by annotators. Method
g (our Wan-Edit) clearly dominates with 66.2% of Top-1 se-
lections, indicating strong perceptual preference. The right
pie chart presents the combined percentage of times each
method was selected as either Top-1 or Top-2, providing
a broader measure of perceived quality. Again, method g
(our Wan-Edit) leads with 41.9%, followed by method e
(VideoGrain: 20.6%) and method b (DMT: 15.1%). These
results highlight the overall superiority of our Wan-Edit in
human perception, while also reflecting relative strengths of
other methods in terms of broader acceptance.

Human validation of mask quality. The segmentation
masks in FiVE benchmark are initially generated by the
SAM model to provide object-level supervision. To ensure
accuracy and alignment with the intended target regions,
each mask is manually reviewed and corrected if necessary
by human annotators (see Fig. 8). This process guarantees
high-quality annotations that support reliable evaluation.

https://sites.google.com/view/five-benchmark
https://sites.google.com/view/five-benchmark


GPT-4o:

A bicycle is rolling steadily along a 
cobblestone street, with historic buildings 
and flower boxes lining the road. The 
camera remains fixed, capturing the 
bicycle's smooth motion.

……

A bicycle is rolling steadily along a cobblestone street, with historic buildings and flower 
boxes lining the road. The camera remains fixed, capturing the bicycle's smooth motion.

A dog is wagging its tail excitedly while sitting on a sandy beach with waves crashing in 
the background. The camera remains fixed, focusing on the dog's joyful expression.

A cyclist is pedaling vigorously along a tree-lined path in a city park. The camera follows 
the cyclist at a steady pace.

User: Create English captions for video 
generation with the following guideline:

Guideline:
1.Content: Object + Action + Environment + 
Camera Movement.
2.Objects: 1-2 objects (animals, people, 
buildings, vehicles). No groups.
3.Actions: Simple (e.g., vehicle moving) or 
complex (e.g., person running, animal 
jumping).
4.Camera: Static, slow movement, or fast 
movement.

Figure 3. Example of generated caption-video pairs.

System: 
Please generate a new prompt by modifying the content related to the target object based on the provided information.
Guidelines:
- The modification should result in a significant difference between the original and changed objects. For example, change a bird to an airplane, a vehicle to a 
spaceship/UFO/rocket/animal, etc. Use your imagination to make creative changes.
- For the action description, adjust it accordingly to fit the modified object.
- Do not modify the background description. 
- Do not simply add adjective words like ”robotic“ to the changed object, for example ”rhinoceros“ to "robotic rhinoceros", change the object it self.
User: 
"caption": "A bicycle is rolling steadily along a cobblestone street, with historic buildings and flower boxes lining the road. The camera remains fixed, 
capturing the bicycle's smooth motion.",
"id": "0075_A_bicycle",
"target": "A bicycle",
"camera": "fixed",
"action": false

GPT-4o: 
"video_name": "0075_A_bicycle",
"source_prompt": "A bicycle is rolling steadily along a cobblestone street, with historic buildings and flower boxes lining the road. The camera remains fixed, 
capturing the bicycle's smooth motion.",
"target_prompt": "A skateboard is gliding steadily along a cobblestone street, with historic buildings and flower boxes lining the road. The camera remains 
fixed, capturing the skateboard's smooth motion.",
"instruction": "Change the bicycle to a skateboard.”

……

Figure 4. Example of editing prompt generation.

E. GPU Memory and Speed

As shown in Fig. 9, TokenFlow, VidToMe, AnyV2V, and
our proposed Wan-Edit are all positioned in the lower-left
corner, indicating a well-balanced trade-off between editing
time and peak memory usage. However, Wan-Edit signifi-
cantly outperforms the other three in terms of editing qual-
ity, further demonstrating its effectiveness. Compared to
the highly competitive VideoGrain, Pyramid-Edit and Wan-
Edit drastically reduces editing time and memory consump-
tion, proving their efficiency.

The speed differences among these methods stem from

their architectural choices and computational requirements.
Pyramid-Edit is the fastest, benefiting from its multi-
resolution design and the high spatiotemporal compres-
sion rate of VideoVAE (8×8×8), which significantly reduces
the processing burden. However, this aggressive compres-
sion can lead to background collapse, particularly when the
background exhibits fast motion. Wan-Edit, on the other
hand, adopts a more moderate compression rate (4×8×8),
which balances efficiency and quality, ensuring better back-
ground preservation while maintaining competitive speed.
In contrast, VideoGrain is significantly slower due to its de-



System prompt: 
Given the source and target prompts, along with the source and target objects, generate a question about the edited object 
that reflects its transformation from the source to the target.

User example:  (customized for each editing type)
Source prompt: ‘A black swan swimming in the river.’
Target prompt: ‘A flamingo swimming in the river.’
Source object: ‘A black swan’
Target object: ‘A flamingo’
Yes/No Questions: ‘Is that a black swan in the river?’ \n ‘Is that a flamingo in the river?’\n\n
Multi-choice Question: ‘What is the object in the river?   Options: A) Black swan B) Flamingo’

GPT-4o: 
Source prompt:  ‘{source prompt}’\n
Target prompt:  ‘{target prompt}’\n
Source object: ‘{source object}’\n
Target object: ‘{target object}\n’
Yes/No Questions:
Multi-choice Question:

Figure 5. Example of Yes/No and Multi-choice question generation for FiVE-Acc evaluation.

Figure 6. Human evaluation example using Netlify. Left: An example illustrating human verification of the FiVE-Acc metric, conducted
on Wan-Edit results. Right: A human preference study where annotators are asked to select the top-2 preferred results.
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Figure 7. Human preference statistics for the evaluated editing
methods (a–g) listed in Table 2 of the main paper.

pendence on segmentation and depth models. These ad-

ditional processing steps, which involve extracting object
masks and depth maps to guide the editing process, in-
troduce substantial computational overhead. This makes
VideoGrain less suitable for real-time or high-speed appli-
cations despite its strong editing accuracy.

F. More Quantitative Results and Analysis
In this section, we present additional experimental results
and provide a comprehensive analysis of the performance
of all baseline methods on our proposed FiVE benchmark.
For clarity, we define six editing types, referred to as Edit
1–6: rigid transformation (e.g., car to bus), non-rigid trans-
formation (e.g., car to elephant), color change (e.g., black
to red), attribute change (e.g., car to a wooden texture), ob-

https://www.netlify.com/


Input: Bear Edit1: Panda Edit2: Dinosaur

Edit3: Purple bear Edit4: Bronze bear Edit5: Bear with a hat

First frame

Mask

Figure 8. Human validation of SAM2-predicted mask quality on all six edit types.
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Figure 9. Comparison of editing efficiency, including GPU mem-
ory usage and per-frame running time. All test on a single
NVIDIA H100.

ject addition, and object removal. We conduct a compara-
tive analysis of various video editing methods across these
categories using multiple metrics. Additionally, we evalu-
ate diffusion- and flow-based approaches on the proposed
FiVE benchmark and FiVE-Acc metric.

Tables 2 and 4 present the results for Edit1: Object re-
placement without non-rigid transformations (e.g., replac-
ing a car with a bus). Our proposed Wan-Edit achieves
background preservation and text alignment comparable
to VideoGrain, while exhibiting superior motion fidelity.
Since Wan-Edit better retains the original video back-
ground, its IQA scores remain consistent with those of the
source video. Regarding the FiVE-Acc metrics, which as-
sess the accuracy of successful edits, the most competitive
method is DMT, which optimizes editing based on the input
text. The training-free Wan-Edit and VideoGrain achieve
similar results, slightly trailing DMT but significantly out-
performing other methods. Overall, DMT offers the best

text-vision alignment but requires optimization, whereas
VideoGrain and Wan-Edit strike a strong balance across var-
ious fine-grained video editing metrics. Notably, Wan-Edit
stands out for its superior efficiency, delivering faster and
more stable results compared to VideoGrain.

Tables 3 and 5 present the results of all compared meth-
ods on Edit2: Object Replacement with Non-Rigid Trans-
formations, revealing similar conclusions to Edit1: Object
Replacement with Rigid Transformations. However, Edit2
is more challenging than Edit1 due to the complexity of
non-rigid transformations. This increased difficulty results
in a noticeable drop in text-vision alignment, motion fi-
delity scores, and the editing success rate (FiVE-Acc) met-
rics compared to Edit1. In terms of the editing success
rate (FiVE-Acc), DMT and Wan-Edit achieve 67.86% and
52.02%, respectively, on Edit1, with DMT outperforming
Wan-Edit by approximately 15%. However, on Edit2, DMT
drops significantly to 53.72%, while Wan-Edit remains sta-
ble. This indicates Wan-Edit’s robustness in handling non-
rigid transformations, maintaining consistent performance
even in more challenging editing scenarios.

Similarly, consistent trends are observed across other
editing types, Edit3 (color changes) and Edit4 (object ma-
terial changes) as shown in Tables 6 - 9, further reinforc-
ing our conclusions. Regarding the FiVE-Acc metric, color
changes (Edit3) achieve the highest editing success rate
among all types, with VideoGrain reaching 86% and Wan-
Edit at 63%. In contrast, object material changes (Edit4)
are significantly more challenging, with AnyV2V achiev-
ing the highest success rate at 43%, followed by Pyramid-
Edit at 36%. This difficulty arises because object material
changes often require modifying mid- and low-frequency
noise, making training-free methods highly sensitive to pa-
rameters, which leads to lower success rates.

Tables 10 - 13 compare the results of Edit5 (object
addition) and Edit6 (object removal). For object addi-
tion (Edit5), VideoGrain and Wan-Edit achieve the high-



est scores in background preservation and motion fidelity,
while TokenFlow performs best in text-vision alignment
and IQA. In terms of FiVE-Acc, the RF-based methods
Pyramid-Edit and Wan-Edit achieve success rates of 83%
and 72%, respectively, whereas the highest-performing
diffusion-based method, DMT, reaches only 61%, high-
lighting the advantage of RF-based approaches in this task.
For Edit6 (object removal), nearly all methods perform the
worst among all editing types, with FiVE-Acc scores drop-
ping below 20%, indicating that object removal is one of
the most challenging fine-grained editing tasks. This diffi-
culty arises because removing an object requires precisely
inpainting the occluded background while maintaining tem-
poral coherence, which is particularly challenging for exist-
ing editing models. The visualizations in Fig. 4 of the main
paper further confirm these findings.

In conclusion, our analysis ranks the difficulty of fine-
grained video editing tasks, with color changes (Edit3) be-
ing the easiest and object removal (Edit6) the most chal-
lenging. Rigid object replacement (Edit1) and object addi-
tion (Edit5) are relatively simple, while non-rigid transfor-
mations (Edit2) and material changes (Edit4) pose moder-
ate challenges. The particularly low success rate of object
removal highlights its complexity, requiring precise inpaint-
ing and temporal consistency.

G. More Qualitative Results and Analysis
We present the editing results across various editing types
and comparison methods in Figs. 10 - 13. Specifically,
Figs. 10 - 12 compare the results of diffusion-based and
RF-based editing methods across six editing types. These
comparisons highlight the strengths and weaknesses of
each method while also demonstrating the superiority of
VideoGrain and our Wan-Edit. The videos shown in Fig.
13 are generated examples and represent a particularly chal-
lenging editing case. Editing becomes difficult when the
object occupies a significant portion of the video frame, as
it requires modifying low-frequency noise while maintain-
ing spatial and temporal consistency. This results in fail-
ure even for the best-performing Wan-Edit. To better show-
case the dynamic consistency in video editing, more video
demos are available on the website: https://sites.
google.com/view/five-benchmark.
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Table 2. Edit1: Comparison of diffusion- and flow-based video editing methods for object replacement without non-rigid transformations
on the FiVE benchmark.

Methods
Structure Background Preservation Text Alignment IQA Temp. Consis.
Dist.×103↓ PSNR↑ LPIPS×103↓ MSE×104↓ SSIM×102↑ CLIPS.↑ CLIPS.edit ↑ NIQE↓ Motion Fidelity S.×102↑

Source Videos 0.00 ∞ 0.00 0.00 100.00 23.97 18.75 6.33 93.76

DMs

TokenFlow [2] 36.24 19.12 257.32 137.12 72.63 27.04 21.23 4.05 88.23
DMT [9] 85.35 14.35 410.83 402.43 51.61 27.26 21.52 5.25 81.93
VidToMe [5] 23.81 21.32 261.19 88.47 71.50 27.75 21.19 4.68 90.65
AnyV2V [4] 71.19 15.85 345.77 350.37 50.91 25.41 19.96 4.64 61.63
VideoGrain [8] 11.71 26.92 184.08 26.82 79.06 27.43 21.40 4.10 88.29

RFs
(Ours)

Pyramid-Edit 28.27 20.87 276.18 96.15 72.56 27.43 20.11 5.47 81.52
Wan-Edit 13.50 24.81 93.67 39.67 82.54 27.19 21.38 6.59 89.37

Table 3. Edit2: Comparison of diffusion- and flow-based video editing methods for object replacement with non-rigid transformations on
the FiVE benchmark.

Methods
Structure Background Preservation Text Alignment IQA Temp. Consis.
Dist.×103↓ PSNR↑ LPIPS×103↓ MSE×104↓ SSIM×102↑ CLIPS.↑ CLIPS.edit ↑ NIQE↓ Motion Fidelity S.×102↑

Source Videos 0.00 ∞ 0.00 0.00 100.00 22.13 17.33 6.33 93.76

DMs

TokenFlow [2] 38.88 19.08 246.65 138.69 72.99 26.30 19.70 4.21 88.19
DMT [9] 91.04 14.26 413.98 412.38 50.37 26.86 20.38 5.22 80.23
VidToMe [5] 27.95 20.80 264.37 95.43 70.98 26.95 19.94 4.82 88.97
AnyV2V [4] 70.14 16.01 350.89 325.25 49.66 23.87 18.46 4.62 60.44
VideoGrain [8] 11.24 27.23 180.61 26.13 79.56 25.46 19.35 4.12 87.38

RFs
(Ours)

Pyramid-Edit 30.00 20.65 279.11 101.41 71.74 26.86 18.97 5.52 79.55
Wan-Edit 14.33 24.54 96.53 40.36 82.33 26.85 19.98 6.63 87.94

Table 4. Edit1: Comparison of diffusion- and flow-based video edit-
ing methods for object replacement without non-rigid transforma-
tions on the FiVE benchmark using FiVE-Acc metrics.

Method YN-Acc MC-Acc ∪-Acc ∩-Acc FiVE-Acc↑
TokenFlow [2] 30.30 48.48 49.49 29.29 39.39
DMT [9] 55.95 79.76 79.76 55.95 67.86
VidToMe [5] 25.25 47.47 47.47 25.25 36.36
AnyV2V [4] 27.27 42.42 44.44 25.25 34.85
VideoGrain [8] 40.00 62.00 62.00 40.00 51.00

Pyramid-Edit 27.27 53.54 55.56 25.25 40.40
Wan-Edit 41.41 62.63 62.63 41.41 52.02

Table 5. Edit2: Comparison of diffusion- and flow-based video edit-
ing methods for object replacement with non-rigid transformations
on the FiVE benchmark using FiVE-Acc metrics.

Method YN-Acc MC-Acc ∪-Acc ∩-Acc FiVE-Acc↑
TokenFlow [2] 18.18 37.37 38.38 17.17 27.78
DMT [9] 41.49 65.96 68.09 39.36 53.72
VidToMe [5] 23.23 41.41 43.43 21.21 32.32
AnyV2V [4] 13.13 26.26 30.30 9.09 19.70
VideoGrain [8] 12.24 26.53 26.53 12.24 19.39

Pyramid-Edit 30.30 60.61 60.61 30.30 45.45
Wan-Edit 36.36 67.68 68.69 35.35 52.02



Table 6. Edit3: Comparison of diffusion- and flow-based video editing methods for object color changes on the FiVE benchmark.

Methods
Structure Background Preservation Text Alignment IQA Temp. Consis.
Dist.×103↓ PSNR↑ LPIPS×103↓ MSE×104↓ SSIM×102↑ CLIPS.↑ CLIPS.edit ↑ NIQE↓ Motion Fidelity S.×102↑

Source Videos 0.00 ∞ 0.00 0.00 100.00 26.12 20.64 6.33 93.76

DMs

TokenFlow [2] 35.03 19.07 262.05 138.21 72.71 27.72 21.68 4.02 88.37
DMT [9] 85.75 14.23 413.08 413.91 50.68 28.18 22.10 5.20 81.71
VidToMe [5] 21.90 21.17 261.94 89.81 72.20 28.45 22.16 4.68 89.26
AnyV2V [4] 79.16 14.37 411.83 455.53 46.82 26.58 20.59 4.65 61.13
VideoGrain [8] 14.20 27.08 185.38 25.95 79.37 28.44 22.23 4.09 87.41

RFs
(Ours)

Pyramid-Edit 29.37 20.85 278.17 96.16 72.11 28.10 21.13 5.49 78.80
Wan-Edit 11.63 25.32 90.82 35.77 83.04 27.39 22.04 6.58 88.59

Table 7. Edit4: Comparison of diffusion- and flow-based video editing methods for object material changes on the FiVE benchmark.

Methods
Structure Background Preservation Text Alignment IQA Temp. Consis.
Dist.×103↓ PSNR↑ LPIPS×103↓ MSE×104↓ SSIM×102↑ CLIPS.↑ CLIPS.edit ↑ NIQE↓ Motion Fidelity S.×102↑

Source Videos 0.00 ∞ 0.00 0.00 100.00 26.89 21.85 6.33 93.76

DMs

TokenFlow [2] 35.22 19.22 258.53 133.83 73.06 27.67 22.19 4.10 88.34
DMT [9] 84.34 14.15 408.88 417.24 50.24 27.33 22.28 5.14 80.47
VidToMe [5] 23.19 20.71 273.64 98.70 69.49 27.82 21.91 4.70 89.24
AnyV2V [4] 71.97 15.53 354.39 382.99 50.33 26.42 20.99 4.60 62.14
VideoGrain [8] 10.34 27.21 185.78 25.61 79.13 27.44 21.15 4.02 87.55

RFs
(Ours)

Pyramid-Edit 28.39 20.74 277.73 98.54 72.04 28.07 21.48 5.44 78.27
Wan-Edit 10.66 25.45 89.72 34.19 83.31 27.55 22.35 6.57 88.83

Table 8. Edit3: Comparison of diffusion- and flow-based video edit-
ing methods for object color changes on the FiVE benchmark using
FiVE-Acc metrics.

Method YN-Acc MC-Acc ∪-Acc ∩-Acc FiVE-Acc↑
TokenFlow [2] 34.34 46.46 48.48 32.32 40.40
DMT [9] 55.06 61.80 64.04 52.81 58.43
VidToMe [5] 36.36 42.42 43.43 35.35 39.39
AnyV2V [4] 54.55 64.65 67.68 51.52 59.60
VideoGrain [8] 82.00 90.00 92.00 80.00 86.00
Pyramid-Edit 59.60 57.58 66.67 50.51 58.59
Wan-Edit 62.63 63.64 68.69 57.58 63.13

Table 9. Edit4: Comparison of diffusion- and flow-based video edit-
ing methods for object material changes on the FiVE benchmark
using FiVE-Acc metrics.

Method YN-Acc MC-Acc ∪-Acc ∩-Acc FiVE-Acc↑
TokenFlow [2] 11.11 26.26 29.29 8.08 18.69
DMT [9] 11.76 47.06 48.24 10.59 29.41
VidToMe [5] 13.13 36.36 38.38 11.11 24.75
AnyV2V [4] 23.23 63.64 64.65 22.22 43.43
VideoGrain [8] 26.53 40.82 40.82 26.53 33.67

Pyramid-Edit 18.18 54.55 57.58 15.15 36.36
Wan-Edit 19.19 43.43 45.45 17.17 31.31



Table 10. Edit5: Comparison of diffusion- and flow-based video editing methods for object addition on the FiVE benchmark.

Methods
Structure Background Preservation Text Alignment IQA Temp. Consis.
Dist.×103↓ PSNR↑ LPIPS×103↓ MSE×104↓ SSIM×102↑ CLIPS.↑ CLIPS.edit ↑ NIQE↓ Motion Fidelity S.×102↑

Source Videos 0.00 ∞ 0.00 0.00 100.00 23.52 19.58 5.58 97.86

DMs

TokenFlow [2] 36.76 18.55 295.59 152.12 67.04 25.32 21.07 3.25 96.71
DMT [9] 93.29 15.82 413.62 275.22 47.90 25.14 20.85 5.14 91.70
VidToMe [5] 22.31 20.55 275.19 93.10 64.19 24.38 19.73 4.31 97.13
AnyV2V [4] 55.00 16.68 328.01 249.76 48.49 25.01 20.40 4.10 62.76
VideoGrain [8] 18.03 26.42 208.18 27.36 74.44 22.30 18.52 4.10 98.36

RFs
(Ours)

Pyramid-Edit 29.24 20.33 293.97 100.99 65.23 24.83 20.25 5.39 89.90
Wan-Edit 23.04 20.70 139.79 93.43 73.55 25.09 21.32 5.84 97.38

Table 11. Edit6: Comparison of diffusion- and flow-based video editing methods for object removal on the FiVE benchmark.

Methods
Structure Background Preservation Text Alignment IQA Temp. Consis.
Dist.×103↓ PSNR↑ LPIPS×103↓ MSE×104↓ SSIM×102↑ CLIPS.↑ CLIPS.edit ↑ NIQE↓ Motion Fidelity S.×102↑

Source Videos 0.00 ∞ 0.00 0.00 100.00 24.91 21.06 6.79 92.63

DMs

TokenFlow [2] 31.61 19.33 261.55 131.90 76.63 24.70 21.02 4.42 84.15
DMT [9] 75.91 15.43 367.21 315.51 59.05 25.22 21.53 5.49 77.76
VidToMe [5] 15.03 22.35 247.12 66.99 75.80 25.67 21.34 4.91 85.12
AnyV2V [4] 80.71 16.97 300.65 293.93 58.38 22.06 17.93 4.93 54.07
VideoGrain [8] 8.86 27.46 167.21 18.76 83.23 23.05 19.22 4.06 82.46

RFs
(Ours)

Pyramid-Edit 26.63 21.58 254.41 80.54 76.65 25.60 19.26 5.55 75.52
Wan-Edit 2.02 32.62 57.12 7.63 90.52 24.29 20.31 7.02 84.50

Table 12. Edit5: Comparison of diffusion- and flow-based video
editing methods for object addition on the FiVE benchmark using
FiVE-Acc metrics.

Method YN-Acc MC-Acc ∪-Acc ∩-Acc FiVE-Acc↑
TokenFlow [2] 22.22 44.44 44.44 22.22 33.33
DMT [9] 44.44 77.78 77.78 44.44 61.11
VidToMe [5] 22.22 33.33 44.44 11.11 27.78
AnyV2V [4] 55.56 55.56 66.67 44.44 55.56
VideoGrain [8] 22.22 33.33 33.33 22.22 27.78

Pyramid-Edit 66.67 77.78 77.78 66.67 72.22
Wan-Edit 88.89 77.78 88.89 77.78 83.33

Table 13. Edit6: Comparison of diffusion- and flow-based video
editing methods object removal on the FiVE benchmark using
FiVE-Acc metrics.

Method YN-Acc MC-Acc ∪-Acc ∩-Acc FiVE-Acc↑
TokenFlow [2] 0.00 10.00 10.00 0.00 5.00
DMT [9] 0.00 40.00 40.00 0.00 20.00
VidToMe [5] 0.00 0.00 0.00 0.00 0.00
AnyV2V [4] 10.00 20.00 20.00 10.00 15.00
VideoGrain [8] 0.00 11.11 11.11 0.00 5.56

Pyramid-Edit 0.00 20.00 20.00 0.00 10.00
Wan-Edit 0.00 0.00 0.00 0.00 0.00



Edit1 Object (w/o non-rigid deform):  Dog → Rabbit

Edit2 Object (w non-rigid deform):  A young girl → A young alien

Edit3 Color:  A gray dog → A pink dog

Edit4 Material: A wheelchair → A wooden wheelchair

Edit6 Remove: A young girl …, not accompanied by a gray dog walking alongside her.

Source video DMT VidToMe VideoGrain Pyramid-Edit Wan-EditTokenFlow

Figure 10. Editing results across five editing types and six high-performance comparison methods.



Edit1 Object (w/o non-rigid deform):  Bear → Panda

Edit2 Object (w non-rigid deform):  Bear → Dinosaur

Edit3 Color:  A bear → A purple bear

Edit4 Material: A bear → A bronze bear

Source video DMT VidToMe VideoGrain Pyramid-Edit Wan-Edit

Edit5 Add: A bear → A bear with cap

TokenFlow

Figure 11. Editing results across five editing types and six high-performance comparison methods. Wan-Edit is the only method that
succeeds in the object addition editing type.



Edit1 Object (w/o non-rigid deform):  A tennis player → A ultraman

Edit2 Object (w non-rigid deform):  A tennis player → A robot

Edit3 Color: White shorts → Black shorts

Edit4 Material: A tennis player → A clay tennis player

Edit5 Add: A tennis player wearing a bright yellow fedora

Source video DMT VidToMe VideoGrain Pyramid-Edit Wan-EditTokenFlow

Figure 12. Editing results across five editing types and six high-performance comparison methods.



Generated video:
A cyclist wearing a 
helmet is pedaling 

vigorously …

Edit6: 
Not wearing a 

helmet

Edit3: 
Cardboard cyclist

Edit4: 
A maroon cyclist

Edit2: 
A rollerblader 

cyclist

Edit1: 
A skateboarder

Figure 13. A generated video (first row) along with Wan-Edit’s editing results across five editing types (rows 2-6).
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