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Overview
In this document, we first describe more details of the proposed million-scale dataset in Section 1. Next, we present more
details of the proposed method in Section 2. Finally, we provide more qualitative comparisons in Section 3.

1. More Details on the Proposed Million-scale Dataset
Devices. Figure 1 shows the hardware and software used in our mechatronic shooting system, including an electronic slider
(GVM Slider 120 cm), cameras, multiple tripods, and corresponding power supply equipment. Since the imaging process
is closely related to the camera sensor, we employ different shooting devices to ensure data diversity, consisting of three
cameras (i.e., SONY ILCE-7M3, SONY DSC-RX10M4, and Canon EOS-R8) and three smartphones (i.e., iPhone 15 Pro,
VIVO X100 Pro, and HUAWEI Mate 60). To ensure stability throughout the entire shooting process, we use the GVM Slider
app to control the electronic slider and the Imaging Edge Mobile app to control the camera shutter (see Figure 1(b)).

Camera Moving

GVM Slider APP

SONY ILCE-7M3

 Imaging Edge Mobile

(a) The devices in our mechatronic system (b) GVM Slider

Figure 1. The hardware and software of our mechatronic shooting system used for capturing paired data.

Data collection. We adjust internal camera settings (Round II) and external imaging conditions (Round III) to capture various
degradations. Figure 3 shows some examples from our shooting locations. We spent over 6 months completing the large-
scale data collection. Finally, we collect over 8,000 indoor and outdoor scenes, with the relevant statistics shown in Figure 5.
Figure 6 summarizes the proportion of degradations captured in different rounds.
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Table 1. Statistics of training and testing set samples for different degradation types in the proposed million-scale dataset.

Degradation Type Training Set Testing Set Total Number
Blur 109,480 150 109,630
Blur+Noise 29,950 50 30,000
Blur+JPEG Compression 29,940 50 29,990
Blur+Noise+JPEG Compression 29,950 50 30,000
Noise 58,015 100 58,115
JPEG Compression 59,950 50 60,000
Noise+JPEG Compression 29,950 50 30,000
Haze 79,800 200 80,000
Lowlight+Haze 79,800 100 79,900
Rain 39,900 100 40,000
Raindrop 44,828 100 44,928
Lowlight+Rain 40,111 50 40,161
Rain+Haze 79,950 50 79,800
Lowlight 39,962 50 40,012
Lowlight+Blur 85,893 100 85,993
Lowlight+Noise 52,995 50 53,045
Lowlight+JPEG Compression 29,950 50 30,000
Lowlight+Blur+Noise 29,950 50 30,000
Lowlight+Blur+JPEG Compression 29,940 50 29,990
Lowlight+Noise+JPEG Compression 29,950 50 30,000
Total Number 1,010,264 1,500 1,011,614

Table 2. Comparison with training data of existing universal image restoration methods.

Method Venue Degradation Tasks Numbers of Training Data
AirNet [10] CVPR 2022 Noise, Haze, Rain 77,479
TransWeather [20] CVPR 2022 Rain, Raindrop, Snow 18,069
IDR [28] CVPR 2023 Blur, Noise, Haze, Rain, Lowlight 80,067
PromptIR [18] NIPS 2023 Noise, Haze, Rain 77,479
DiffUIR [31] CVPR 2024 Blur, Haze, Rain, Lowlight, Snow 138,435

DA-CLIP [15] ICLR 2024
Blur, Noise, JPEG, Haze, Rain,

Raindrop, Lowlight, Snow, Shadow, Inpainting 52,801

InstructIR [4] ECCV 2024 Blur, Noise, Haze, Rain, Lowlight 10,788

AutoDIR [8] ECCV 2024
Blur, Noise, Haze, Rain,

Raindrop, Super-resolution 114,742

FoundIR (Ours) -

Blur, Noise, JPEG, Haze, Rain, Raindrop, Lowlight,
Blur+Noise, Blur+JPEG, Noise+JPEG, Blur+Noise+JPEG,

Rain+Haze, Lowlight+Haze, Lowlight+Rain, Lowlight+Blur, Lowlight+Noise,
Lowlight+JPEG, Lowlight+Blur+Noise, Lowlight+Blur+JPEG, Lowlight+Noise+JPEG

1,011,614

Table 3. Data alignment and proportion of different resolution.

Metrics Mean Flow Magnitude Flow Standard Deviation Outlier Ratio
w/o alignment 12.52 pixel 24.71 pixel 38.51%
w/ alignment 1.64 pixel 2.57 pixel 12.59%

Resolution ≤ 1K 1K∼2K 2K∼4K ≥ 4K
Proportion 0.75% 56.17% 21.96% 21.12%
Average 2514× 1516

(a) Effect of our alignment pipeline (b) Proportion of different data resolution

Data alignment. We present several examples of reference objects as start-marker and end-marker in the data alignment
pipeline, as shown in Figure 4. We manually select aligned GT-LQ frames from the uniform moving phase in a frame-wise
manner once the start-marker disappears, continuing until the end-marker appears in the deceleration phase. To ensure align-
ment reliability, we manually inspect each image to exclude anomalous samples, particularly addressing the challenge of ref-
erence object identification under extremely dark conditions. To quantitatively evaluate the alignment quality, we calculate the
optical flow between the captured GT and LQ data based on the Farneback algorithm (using cv2.calcOpticalFlowFarneback
in OpenCV), which approximates motion for every pixel via polynomial expansion. Table 3(a) shows that using the alignment
pipeline in Section 3.2 can effectively reduce pixel-level misalignment between GT and LQ data.



Data construction. Although we utilize a mechatronic shooting system to collect large-scale real-world paired data, synthetic
data generation is employed for haze and JPEG compression degradations. This is because these degradations are difficult to
capture as paired data by adjusting internal camera settings and external imaging conditions. Similar to [32], we synthesize
hazy images based on the atmospheric scattering model [6]. Since the haze effect is closely related to scene depth, we use
a foundation model, Depth Anything [25], to achieve better depth estimation. Following [22], the compressed images are
randomly formulated using a quality factor q ∈ [30, 90], where an image with a lower q has worse quality.

Dataset statistics. Using the proposed shooting system, we capture around 8,500 scenes in total, including 3,800 indoor
scenes and 4,700 outdoor scenes. In Table 1, we present the statistics of training and testing set samples for different
degradation types in the proposed million-scale dataset. Compared to existing training data (see Table 2), our dataset provides
a larger training scale and a greater variety of degradation types for foundation models in image restoration. The average
resolution of all images is 2514× 1516, and the proportion of different resolutions is reported in Table 3(b).

Dataset samples. We present sample images in Figures 8-10, including 6 isolated and 12 coupled degradation types.

Limitation. Though the proposed unified data collection system can capture large-scale real-world training data for image
restoration foundation models, it may not encompass all real-world degradation scenarios. Our future work will enhance the
diversity and representativeness of the proposed dataset by incorporating additional real-world degradation conditions.

2. More Details on the Proposed Method
Loss function for generalist model. Inspired by [13, 31], we adopt the L1 loss to drive the model for directly predicting the
residual Ires. The training objective is defined as follows:

L(θ) = E
[∥∥Ires − Iθres (It, t)

∥∥
1

]
, (1)

where It is the output in timestep t, and Ires denotes the residual components between LQ (ILQ) and HQ (IHQ) images.

Task-Incremental pool. In the task-incremental pool, we prioritize grouping degradations with similar attributes as task
neighbors, such as Haze-Rain-Raindrop. The complete task-incremental sequence is consistent with that provided in Table 2.
This setup offers several benefits compared to a random order: (1) By arranging tasks with similar attributes sequentially, the
network can gradually adapt its understanding from one degradation type to another. This reduces the learning complexity
and helps the model transfer knowledge effectively between related tasks. (2) Similar degradations share underlying patterns
and feature representations. Thus, learning them in proximity allows the model to leverage shared information, improving the
efficiency and stability of model training. (3) Since neighboring tasks have related features, the risk of forgetting previously
learned tasks is minimized. This ensures smoother transitions and better retention of earlier knowledge.

Class-Incremental flow. We find that diverse coupled degradations naturally share some overlapping feature space distri-
butions due to the interaction of multiple degradation effects, whereas diverse isolated degradations typically exhibit more
distinct and dispersed distributions, as shown in Figure 7. Our class-incremental flow, which begins with isolated degrada-
tions and uses the learned information to guide the learning of coupled degradations, offers several advantages over learning
both types simultaneously: (1) By starting with isolated degradations, the model can learn more distinct and dispersed feature
space distributions. This way simplifies the initial learning process and avoids the complexities introduced by overlapping
feature spaces in coupled degradations. (2) Leveraging the learned information from isolated degradations provides a struc-
tured foundation for tackling coupled degradations. This guidance reduces the difficulty of learning interactions between
multiple degradation effects, as the model already has a solid understanding of individual degradation patterns. (3) Learning
both isolated and coupled degradations simultaneously could lead to conflicting gradients and slower convergence due to
overlapping feature spaces. The incremental approach avoids this by sequentially addressing simpler tasks (isolated degra-
dations) before moving on to the more complex coupled degradations.

Expert pool. Our expert pool is highly extensible, allowing researchers to easily integrate more specialist models tailored
to specific restoration tasks. For example, researchers can add experts specialized in tasks such as face image restoration,
underwater image restoration, or other domain-specific challenges. This adaptability ensures that the framework can rapidly
adjust to new and emerging restoration needs, improving both the efficiency and accuracy of the model for a wide range of
real-world applications. By incorporating both generalist and specialist models, our approach not only improves restoration
quality but also offers the flexibility to handle a variety of degradation types.



Testing pipeline of FoundIR. The proposed FoundIR consists of a generalist model and multiple specialist models, obtaining
high-quality restored images in various real-world scenarios. Specifically, the generalist model allows users to restore images
with unknown degradations. Furthermore, to meet the users’ specific needs in challenging and complex inputs, multiple
specialist models are provided to refine the generalist model’s results in parallel. Users have the flexibility to either directly
use the result of the generalist model or the refined results obtained by different specialist models.

3. More Experimental Results
Quantitative comparisons of perceptual metrics. Table 4 shows the quantitative comparisons of perceptual metrics, in-
cluding LPIPS [29], NIQE [17], NIMA [19], MUSIQ [9], CLIPIQA [21], MANIQA [26], and FID [7] on the proposed
benchmark. The proposed FoundIR achieves the best performance compared with recent state-of-the-art methods [3, 10, 15,
18, 24, 31].

Table 4. Quantitative comparisons of perceptual metrics on the proposed benchmark.

Method AirNet [10] PromptIR [18] DiffIR [24] DiffUIR [31] DA-CLIP [15] X-Restormer [3] FoundIR
LPIPS ↓ [29] 0.5250 0.3872 0.3222 0.2903 0.4600 0.4061 0.2693
NIQE ↓ [17] 7.6521 6.7485 4.9767 4.9472 7.1613 6.6968 4.8761
NIMA ↑ [19] 4.4301 4.4228 4.4668 4.7531 4.4594 4.4131 4.7673
MUSIQ ↑ [9] 29.4592 34.6049 41.7078 50.6280 31.7528 33.7725 50.9194
CLIPIQA ↑ [21] 0.3407 0.3348 0.3259 0.3777 0.3601 0.3245 0.3953
MANIQA ↑ [26] 0.4614 0.4589 0.4919 0.5565 0.4570 0.4617 0.5580
FID ↓ [7] 56.2712 31.0074 29.7050 15.2832 40.5125 36.5438 14.7455

Model efficiency. Table 5 shows the comparisons of model efficiency (i.e., Parameters, FLOPs, and Testing time) with other
SOTA universal restoration methods [14, 15, 24], where the testing time is averaged on 100 images (with 1080 × 1920 × 3
pixels), evaluated on a machine with a NVIDIA GeForce RTX 4090 GPU, using PyTorch 2.0.

Table 5. Comparison of model efficiency with recent methods.

Method DiffIR [24] IR-SDE [14] DA-CLIP [15] FoundIR
Parameters (M) 35.59 36.22 174.10 36.30
FLOPs (G) 499 3610 3674 310
Testing time (s) 21.37 132.78 145.22 10.88

Extend FoundIR to other restoration task. Since our goal is to develop a general image restoration method, we explore
its potential for extending to other restoration tasks. To achieve this, we extend our FoundIR to the real-world image super-
resolution (SR) task by incorporating some SR specialist models [2, 23, 27]. Specifically, we first use the generalist model to
restore the low-resolution (LR) input, and then fine-tune the SR specialist models to obtain the high-resolution (HR) output.
Table 6 shows that by integrating the generalist model of our FoundIR, existing methods [2, 23, 27] can achieve significant
performance improvement on real-world SR (×4) benchmark [1].

Table 6. Quantitative comparisons of no-reference metrics (i.e., MUSIQ [9], CLIPIQA [21]) on the real-world SR (×4) benchmark [1].
Where G and S denote the generalist model and specialist model, respectively.

Method ResShift [27] FoundIR (G) + ResShift (S) OSEDiff [23] FoundIR (G) + OSEDiff (S) FaithDiff [2] FoundIR (G) + FaithDiff (S)
MUSIQ ↑ 31.46 35.82 32.62 40.93 31.41 37.54
CLIPIQA ↑ 0.4772 0.4841 0.6613 0.6817 0.5422 0.5621

Impact of incremental learning strategy. Beyond the 0.30dB PSNR improvement averaged across all degradation types
reported in Table 4(a) of the main paper, Figure 2(a) shows detailed comparisons on each degradation type, where our
incremental learning strategy outperforms the commonly used ‘Combine-Train’ on a larger number of degradation categories.
Moreover, we compare performing various training strategies (i.e., Combine-Train, IL (Dc → Di), and IL (Di → Dc))
in Figure 2(b). Our training strategy (IL (Di → Dc)) achieves a clearer result on a challenging example with coupled
degradations (i.e., lowlight+blur).



L+B Input Combine-Train

IL (Dc → Di) IL (Di → Dc)
(a) Quantitative comparisons on different degradation type. (b) Visual comparisons.

Figure 2. Effect of incremental learning strategy.

Qualitative comparisons on the proposed dataset. To demonstrate the effectiveness and generalization of the proposed
method, Figures 11-32 present qualitative comparisons with state-of-the-art methods [3, 8, 10, 15, 18, 24, 31] across all
degradation types in the proposed million-scale dataset. The proposed FoundIR can handle various degradations and generate
much clearer images with finer details and structures.

Qualitative comparisons on public benchmarks. We conduct additional qualitative comparisons with recent methods [8,
10, 18, 20, 24, 31] on public benchmarks [5, 11, 12, 30] to evaluate the generalization ability of the proposed training data.
Note that ‘DiffUIR-Official’ and ‘DiffUIR-Our data’ represent the official pre-trained model and the model retrained on the
proposed dataset, respectively. Figures 33-38 show that ‘DiffUIR-Our data’ restores better results compared to ‘DiffUIR-
Official’, while the proposed FoundIR is able to effectively handle out-of-distribution data.

Qualitative comparisons in ablation studies. Figure 39 shows that the models trained on existing public datasets (see
Figures 39(b)-(c)) struggle to address coupled degradation (e.g., Lowlight+Haze) effectively. While Figure 40 presents that
these models fail to remove the complex real-world rain streaks. In contrast, the models trained on the proposed training data
can handle different real-world complex degradations, and the quality of the restored image improves progressively as the
scale of the training data increases (see Figures 39(d)-(f)).

Furthermore, to demonstrate the effectiveness of our ensemble framework, we provide qualitative comparisons in Fig-
ure 41. It demonstrates that our method produces clearer results, particularly excelling at handling coupled degradations.



(a) GT capture (Round I) (b) Adjust camera settings (Round II)

(c) Record object movements (Round II) (d) Record pedestrian movements (Round II)

(e) Close the curtains (Round III) (f) Turning off the lights (Round III)

(g) Use electric sprinklers to generate rain (Round III) (h) Artificial light source (Round III)

Figure 3. Examples of data collection in different rounds. We adjust internal camera settings (Round II) and external imaging conditions
(Round III) to capture various degradation.



(a) Start-marker (b) End-marker

(c) Markers in data collection scenarios (d) Markers in data collection scenarios

Figure 4. Examples of placing reference objects in the data alignment pipeline. To mitigate misalignment between each GT-LQ frames,
we place recognizable reference objects as start-marker and end-marker before and after the uniform moving phase.
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Figure 5. Word cloud statistics derived from real-world data collection scenarios. It can be observed that our million-scale dataset encom-
passes a wide variety of rich indoor and outdoor scenes.



Figure 6. Statistics of degradation captured by multi-round data collection using our system. The upper semicircle represents the shooting
round, while the lower semicircle indicates the types of degradations captured.

(a) Isolated degradation (b) Coupled degradation

Figure 7. Distribution of different degradations visualized by t-SNE [16].
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Figure 8. Example LQ-GT paired images in the proposed million-scale dataset. Compared to existing training data, the proposed dataset
offer twofold advantages: (i) larger-scale real-world samples, and (ii) higher-diversity data types. Zoom in for a better view.



LQ LQ patch GT GT patch

B
lu

r+
N

oi
se

B
lu

r+
JP

E
G

N
oi

se
+J

PE
G

L
ow

lig
ht

+H
az

e
L

ow
lig

ht
+R

ai
n

L
ow

lig
ht

+B
lu

r

Figure 9. Example LQ-GT paired images in the proposed million-scale dataset. Compared to existing training data, the proposed dataset
offer twofold advantages: (i) larger-scale real-world samples, and (ii) higher-diversity data types. Zoom in for a better view.



LQ LQ patch GT GT patch

L
ow

lig
ht

+N
oi

se
L

ow
lig

ht
+J

PE
G

L
ow

lig
ht

+B
lu

r+
N

oi
se

L
ow

lig
ht

+B
lu

r+
JP

E
G

L
ow

lig
ht

+N
oi

se
+J

PE
G

B
lu

r+
N

oi
se

+J
PE

G

Figure 10. Example LQ-GT paired images in the proposed million-scale dataset. Compared to existing training data, the proposed dataset
offer twofold advantages: (i) larger-scale real-world samples, and (ii) higher-diversity data types. Zoom in for a better view.



Blur

LQ GT

AirNet [10] PromptIR [18]

DiffIR [24] DiffUIR [31]

DA-CLIP [15] X-Restormer [3]

AutoDIR [8] FoundIR (Ours)

Figure 11. Visual comparison results. Compared to the results restored by existing methods [3, 8, 10, 15, 18, 24, 31], which still contain
significant blur effects, our approach generates a clearer image. Zoom in for a better view.
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AirNet [10] PromptIR [18]

DiffIR [24] DiffUIR [31]

DA-CLIP [15] X-Restormer [3]

AutoDIR [8] FoundIR (Ours)

Figure 12. Visual comparison results. Compared to the results restored by existing methods [3, 8, 10, 15, 18, 24, 31], which still contain
significant blur effects, our approach generates a clearer image. Zoom in for a better view.



Noise

LQ GT

AirNet [10] PromptIR [18]

DiffIR [24] DiffUIR [31]

DA-CLIP [15] X-Restormer [3]

AutoDIR [8] FoundIR (Ours)

Figure 13. Visual comparison results. Compared to the results restored by existing methods [3, 8, 10, 15, 18, 24, 31], which still contain
significant noise effects, our approach generates a clearer image. Zoom in for a better view.



Raindrop

LQ GT

AirNet [10] PromptIR [18]

DiffIR [24] DiffUIR [31]

DA-CLIP [15] X-Restormer [3]

AutoDIR [8] FoundIR (Ours)

Figure 14. Visual comparison results. Compared to the results restored by existing methods [3, 8, 10, 15, 18, 24, 31], which still contain
significant raindrops, our approach generates a clearer image. Zoom in for a better view.
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LQ GT

AirNet [10] PromptIR [18]

DiffIR [24] DiffUIR [31]

DA-CLIP [15] X-Restormer [3]

AutoDIR [8] FoundIR (Ours)

Figure 15. Visual comparison results. Compared to the results restored by existing methods [3, 8, 10, 15, 18, 24, 31], which still contain
significant raindrops, our approach generates a clearer image. Zoom in for a better view.
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LQ GT

AirNet [10] PromptIR [18]

DiffIR [24] DiffUIR [31]

DA-CLIP [15] X-Restormer [3]

AutoDIR [8] FoundIR (Ours)

Figure 16. Visual comparison results. Compared to the results restored by existing methods [3, 8, 10, 15, 18, 24, 31], which still contain
significant raindrops, our approach generates a clearer image. Zoom in for a better view.
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AirNet [10] PromptIR [18]

DiffIR [24] DiffUIR [31]

DA-CLIP [15] X-Restormer [3]

AutoDIR [8] FoundIR (Ours)

Figure 17. Visual comparison results. Compared to the results restored by existing methods [3, 8, 10, 15, 18, 24, 31], our approach
generates a clearer image. Zoom in for a better view.
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AirNet [10] PromptIR [18]

DiffIR [24] DiffUIR [31]

DA-CLIP [15] X-Restormer [3]

AutoDIR [8] FoundIR (Ours)

Figure 18. Visual comparison results. Compared to the results restored by existing methods [3, 8, 10, 15, 18, 24, 31], our approach
generates a clearer image. Zoom in for a better view.
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AirNet [10] PromptIR [18]

DiffIR [24] DiffUIR [31]

DA-CLIP [15] X-Restormer [3]

AutoDIR [8] FoundIR (Ours)

Figure 19. Visual comparison results. Compared to the results restored by existing methods [3, 8, 10, 15, 18, 24, 31], our approach
generates a clearer image. Zoom in for a better view.
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Figure 20. Visual comparison results. Compared to the results restored by existing methods [3, 8, 10, 15, 18, 24, 31], our approach
generates a clearer image. Zoom in for a better view.
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Figure 21. Visual comparison results. Compared to the results restored by existing methods [3, 8, 10, 15, 18, 24, 31], our approach
generates a clearer image. Zoom in for a better view.
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Figure 22. Visual comparison results. Compared to the results restored by existing methods [3, 8, 10, 15, 18, 24, 31], our approach
generates a clearer image. Zoom in for a better view.
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Figure 23. Visual comparison results. Compared to the results restored by existing methods [3, 8, 10, 15, 18, 24, 31], our approach
generates a clearer image. Zoom in for a better view.
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Figure 24. Visual comparison results. Compared to the results restored by existing methods [3, 8, 10, 15, 18, 24, 31], our approach
generates a clearer image. Zoom in for a better view.
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Figure 25. Visual comparison results. Compared to the results restored by existing methods [3, 8, 10, 15, 18, 24, 31], our approach
generates a clearer image. Zoom in for a better view.
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Figure 26. Visual comparison results. Compared to the results restored by existing methods [3, 8, 10, 15, 18, 24, 31], our approach
generates a clearer image. Zoom in for a better view.
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Figure 27. Visual comparison results. Compared to the results restored by existing methods [3, 8, 10, 15, 18, 24, 31], our approach
generates a clearer image. Zoom in for a better view.



Lowlight+Noise

LQ GT

AirNet [10] PromptIR [18]

DiffIR [24] DiffUIR [31]

DA-CLIP [15] X-Restormer [3]

AutoDIR [8] FoundIR (Ours)

Figure 28. Visual comparison results. Compared to the results restored by existing methods [3, 8, 10, 15, 18, 24, 31], our approach
generates a clearer image. Zoom in for a better view.
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Figure 29. Visual comparison results. Compared to the results restored by existing methods [3, 8, 10, 15, 18, 24, 31], our approach
generates a clearer image. Zoom in for a better view.
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Figure 30. Visual comparison results. Compared to the results restored by existing methods [3, 8, 10, 15, 18, 24, 31], our approach
generates a clearer image. Zoom in for a better view.
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Figure 31. Visual comparison results. Compared to the results restored by existing methods [3, 8, 10, 15, 18, 24, 31], our approach
generates a clearer image. Zoom in for a better view.
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Figure 32. Visual comparison results. Compared to the results restored by existing methods [3, 8, 10, 15, 18, 24, 31], our approach
generates a clearer image. Zoom in for a better view.
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Figure 33. Visual comparison results on the public benchmark - 4KRD [5]. Compared to the results restored by existing methods [8, 10,
18, 20, 24, 31], our approach generates a clearer image. Zoom in for a better view.
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Figure 34. Visual comparison results on the public benchmark - RealRain-1K [12]. Compared to the results restored by existing methods [8,
10, 18, 20, 24, 31], our approach generates a clearer image. Zoom in for a better view.
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Figure 35. Visual comparison results on the public benchmark - RealRain-1K [12]. Compared to the results restored by existing methods [8,
10, 18, 20, 24, 31], our approach generates a clearer image. Zoom in for a better view.
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Figure 36. Visual comparison results on the public benchmark - HazeRD [30]. Compared to the results restored by existing methods [8,
10, 18, 20, 24, 31], our approach generates a clearer image. Zoom in for a better view.
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Figure 37. Visual comparison results on the public benchmark - UHD-LL [11]. Compared to the results restored by existing methods [8,
10, 18, 20, 24, 31], our approach generates a clearer image. Zoom in for a better view.
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Figure 38. Visual comparison results on the public benchmark - UHD-LL [11]. Compared to the results restored by existing methods [8,
10, 18, 20, 24, 31], our approach generates a clearer image. Zoom in for a better view.



(a) Lowlight+Haze (b) Mix-trained on existing synthetic datasets (200K)

(c) Mix-trained on existing synthetic+real datasets (200K) (d) Mix-trained on 20% of our dataset (200K)

(e) Mix-trained on 50% of our dataset (500K) (f) Mix-trained on our million-scale dataset

Figure 39. Generalization analysis under Lowlight+Haze condition. The results shown in (b)-(c) demonstrate that models trained on these
datasets only enhance the image without effectively removing the haze. This indicates that existing training datasets struggle to address
coupled degradations effectively. In contrast, the results shown in (d)-(f) illustrate that as the scale of our training dataset increases, the
quality of image restoration improves progressively.



(a) Rain (b) Mix-trained on existing synthetic datasets (200K)

(c) Mix-trained on existing synthetic+real datasets (200K) (d) Mix-trained on 20% of our dataset (200K)

(e) Mix-trained on 50% of our dataset (500K) (f) Mix-trained on our million-scale dataset

Figure 40. Generalization analysis under Rain condition. The results shown in (b)-(c) demonstrate that models trained on these datasets fail
to remove rain streaks. This indicates that existing training datasets struggle to address real-world degradations effectively. In contrast, the
results shown in (d)-(f) illustrate that as the scale of our training dataset increases, the quality of image restoration improves progressively.



(a) Lowlight (e) Rain

(b) Only generalist model (f) Only generalist model

(c) Only specialist model (g) Only specialist model

(d) Our ensemble model (h) Our ensemble model
Figure 41. Visual comparisons of different variants of our proposed FoundIR. It can be observed that our ensemble framework effectively
removes complex degradations in real-world scenarios, producing much clearer results.
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