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A. Implementation Details
For training models of various architectures on the
ImageNet-1K and CIFAR100 datasets, we use different
optimization settings and hyperparameters for CNN and
MSA/MLP students following the code and paper of
OFA [6]. The detailed settings can be found in Tab. 1. Our
code and models are from Timm library [20]. Given that
the training pipeline for VisionMamba [22] is currently not
integrated into the timm library [20], we don’t consider it
following OFA [6].

Besides, we set γ in LOFA as 1.0 on CIFAR100 [9] and
1.5 in ImageNet-1K [4] like OFA [6]. The τ2 is learnable
in LInfoNCE. The weight of LOFA and LInfoNCE are equal.
We averagely divide the model into 4 stages if the model is
not originally 4-stage in this paper.
If the student and teacher are heterogeneous models, the
logits of our fused model is:

pf(x) = fcm ◦S4m ◦
L2G︷ ︸︸ ︷

(MSA ◦ PE) ◦S3c ◦S2c ◦S1c(x), (1)

where x is the input image, Sic denotes CNN modules,
L2G includes patch embedding module (PE) and multi-
head-self-attention block (MSA), Sim denotes MSA/MLP
modules, and fcm denotes the fully-connected layers of
MSA/MLP models. Note that our fused model is also CNN-
MSA/MLP connection when the teacher is CNN model.
When the CNN teacher is frozen, the first three MSA/MLP
stages learn to align with the first three CNN stages, and
the last MSA/MLP stage learns to align with the teacher’s
output.

If the student and teacher are homogeneous (i.e., both
CNN/MSA/MLP models), the fused model is:

pf(x) = fct ◦ S4t ◦
L2G︷ ︸︸ ︷

(MSA ◦ PE) ◦S3s ◦ S2s ◦ S1s (x), (2)

where x is the input image, Sis denotes student mod-
els, L2G includes patch embedding module (PE) and multi-
head-self-attention block (MSA), Sit denotes teacher mod-
els, and fct denotes the fully-connected layers of teacher
models. We argue that homogeneous model pairs also have
gaps in inductive bias and module functions, so the fusion
works for them too in Tab. 3 of our main paper.

B. Comparisons with other methods
We compare the differences between some similar methods
and our FBT in Fig. 1. Firstly, to the best of our knowl-
edge, our FBT is the first work to bridge heterogeneous
model pairs with knowledge fusion, which provides more
flexible designs for heterogeneous knowledge fusion and
transfer. Secondly, our fused model bridges the representa-
tion gaps between cross-architecture students and teachers
by combining different inductive biases and module func-
tions, making our FBT more suitable for cross-architecture
distillation. Thirdly, as demonstrated in [6], the LOFA en-
hances the target information and hinders the transfer of in-
correct information from the teacher by a modulating pa-
rameter γ [6], which is more suitable than LKL in cross-
architecture distillation. Lastly, the LMSE aligns the fea-
tures in a pixel-by-pixel manner, which is not reasonable
for spatially different heterogeneous features, e.g. (A) and
(E) in Fig. 2. Thus, as demonstrated in Tab. 4, we get the
better performance by smoothing the features in spatial and
apply contrastive learning by LInfoNCE to align the feature
embeddings of cross-architecture models.

B.1 Comparisons with FCFD [11]
There are some works to input the student features to teach-
ers in similar-architecture distillations, e.g., ReviewKD [3],
FCFD [11], and so on [2]. However, they are all designed
for teacher-student pairs with similar architectures, suggest-
ing different motivations and designs compared to our FBT
for cross-architecture distillation. For example, FCFD [11]
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CIFAR100 ImageNet-1K
CNN MSA/MLP CNN MSA/MLP

Epochs 100 300 300 300
Image resolution 2242 2242 2242 2242

Batch size 512 1024 1024 512
Initial LR 0.1 5e-4 0.1 5e-4

Minimum LR 1e-6 1e-6 1e-3 1e-5
Optimizer SGD AdamW SGD AdamW

Weight decay 1e-4 5e-2 2e-3 5e-2
LR schedule ×0.1 at [30,60,90] Cosine Cosine Cosine

Warmup 3 20 3 20
EMA - 0.99996 - -

RandAugment - 9/0.5 - 9/0.5
Mixup - 0.8 - 0.8
Cutmix - 1.0 - 1.0
RE prob - 0.25 - 0.25

Table 1. Details of optimization settings. The settings are following OFA [6].

has the best performance and is the most similar method to
our FBT, but some important designs of our FBT are very
different from FCFD.

Firstly, FCFD [11] is designed for CNN students and
teachers, which needs to be modified seriously if we apply
it to heterogeneous distillations. Besides, as demonstrated
in Tab. 2, FCFD is not suitable for any cross-architecture
teacher-student models. But our FBT is generic for any
teacher-student pair.

Table 2. Results of FCFD in cross-architecture distillations on
CIFAR100 dataset. As shown, FCFD is not suitable for cross-
architecture distillations compared to our FBT.

Methods T. S. T. S. T. S.
Swin-T ResNet18 ViT-S ResNet18 ConvNeXt-T Swin-P

FCFD 78.34 53.58 77.29
Our FBT 81.61 81.93 80.34

Secondly, although FCFD [11] also combines different
module functions, the connections between students and
teachers are random and mutual, which makes it hard to
converge to the optimal spaces and brings huge training
costs, especially for cross-architecture distillations. Con-
versely, our FBT considers that the CNN models are feature
extractors and the MSA/MLP models are feature aggrega-
tors [14], so the fused model is the CNN-MSA/MLP model
and obeys the rule of “alternately replacing Conv blocks
with MSA blocks from the end of a baseline CNN model”
in [14]. For example, FCFD [11] includes the multiply
random connections of MSA/MLP-CNN models (the first
parts are MSA/MLP modules, and the latter parts are CNN
modules) when we modify it to cross-architecture distilla-
tion. However, MSA/MLP-CNN models are unreasonable
for the hybrid models [14], leading to bad distillation per-
formance.

Thirdly, FCFD [11] is a two-level paradigm that only
considers the knowledge transfer between the teacher and
student, not introducing the knowledge transfer between the
fused model and student. However, the supervision of the
fused model is very important as demonstrated in our abla-
tion study of the main paper.

Fourthly, FCFD [11] is designed for CNN models and
does not consider the representation gaps between different
inductive biases between cross-architecture models. Thus,
the feature projectors of FCFD are CNN modules, which
perform worse than our L2G modules because L2G in-
cludes the MSA modules to convert the local features to
global receptive fields.

Lastly, FCFD [11] does not consider the gaps between
different representation spaces of cross-architecture mod-
els. Thus, the loss functions of FCFD [11], i.e., LKL and
LMSE are not appropriate for cross-architecture teacher-
student pairs. For example, as demonstrated in Tab. 4,
LMSE is not suitable for some cross-architecture teacher-
student pairs.

Experimentally, as shown in Tab. 3 of our main pa-
per, our FBT has a competitive performance compared with
FCFD [11] in similar-architecture distillations. More im-
portantly, our FBT is generic for cross-architecture distilla-
tions, but FCFD is hard to achieve it in Tab. 2.

B.2 Comparisons with TS [13]
Although TS [13] introduces an assistant to bridge the gaps
between students and teachers, it is designed for CNN mod-
els, which is unsuitable for our heterogeneous distillation.

Firstly, TS [13] is a multi-step distillation, which trans-
fers the knowledge from the teacher to the assistant, and
then from the assistant to the student. However, our FBT is a
one-step distillation, which jointly transfers the knowledge
among the teacher, fused model, and student. As shown in



KD [8] FitNet [15] CRD [16] FCFD [11] TS [13] OFA [6] Ours
Knowledge to Distill Logits Feature Feature Feature Logits Logits Feature

Generic Yes No Yes No No Yes Yes
Scheme T.-S. T.-S. T.-S. T.-S. T. → A. → S. T.-S. T.-F.-S.

Heterogeneous Inductive Bias Fusing No No No No No No Yes
Heterogeneous Module Merging No No No Yes No No Yes

Training Cost Very Low Middle High High Middle Middle Low
Loss Function LKL LKL + LMSE LInfoNCE LKL + LMSE LKL LOFA LOFA + LInfoNCE

Figure 1. The taxonomy of our method. Our methods are feature-based, generic, and three-level, which fuses heterogeneous inductive
biases and module functions with an efficient fused model. Target-wise LOFA and spatial-agnostic LInfoNCE are more suitable for CAKD
than LKL and LMSE. To the best of our knowledge, our FBT is one of the pioneer works in feature-based generic distillation.

Tab 4 (E), the knowledge transfer between teacher and stu-
dent is necessary, but TS [13] ignores that.

Secondly, progressive distillation [13] is a distilling strat-
egy, not an algorithm discussed in Appendix D, which is
orthogonal with our FBT.

Lastly, the only difference between the teacher, assistant,
and student in TS [13] is the depth of layers. In other words,
it is simple and designed for only CNN distillation, which
is hard to apply in heterogeneous distillation. However, our
FBT is adaptive for knowledge fusion between heteroge-
neous model pairs.

B.3 Comparisons with recent work [13]
More recently, [21] introduce contrastive distillation in het-
erogeneous distillation. But they also use some common
nature (e.g.,low pass filter) to distill cross-architecture fea-
tures. Differently, our FBT has the adaptive fused model for
different model pairs, fusing heterogeneous inductive bias
and module functions.

C. heterogeneous features
Fig. 2 shows heterogeneous features, demonstrating some
important observations in our main paper.

Firstly, heterogeneous models have different inductive
biases. For example, CNN models [7] have the inductive
bias of “locality”, thereby making the features local like
(A-B) in Fig. 2. Differently, the features of MSA and MLP
models [5, 12, 17] are global because of their global in-
ductive bias, e.g., (C-F) in Fig. 2. Therefore, combining
different inductive biases mitigates the gaps between het-
erogeneous models like our fused model.

Secondly, heterogeneous models have different mod-
ule functions. For example, the architectures/functions of

ResNet [7] and Swin models [12] are hierarchical. They
gradually expand the receptive fields and upsample the fea-
tures, e.g., (A-D) in Fig. 2. Differently, MLP models [17]
and most MSA models [5] are uniform. The features of
shadow and deep layers have higher similarity than the hi-
erarchical CNN, e.g., (E-F) in Fig. 2. Therefore, combining
different module functions mitigates the gaps between het-
erogeneous models like our fused model.

Thirdly, features of heterogeneous models have different
spatial distributions in different channels. For example, the
different channels of CNN models have similar spatial lo-
calizations (such as the right figures of Fig. 2 (A-B)). Con-
versely, the features of MSA and MLP models in different
channels are more diverse, e.g., the right figures of Fig. 2(C-
F). Besides, as demonstrated in [7, 14, 17], spatial smooth-
ing is useful for the predictions of CNN/MSA/MLP models
(e.g., average pooling). Therefore, we smooth the features
and replace pixel-by-pixel LMSE with LInfoNCE in our main
paper. Tab. 4 also demonstrates the strength of applying
LInfoNCE to smoothing features.

Methods (all methods only use the LKD) CIFAR100
(A) Swin → ResNet34 + Resnet34 → ResNet18 78.53

(B) Swin-fusion-ResNet18 (ours w/o LFBT(Kt,Ks)) 79.26
(C) Swin-fusion-ResNet18(ours w/ LFBT(Kt,Ks) 79.28
(D) Swin → ResNet18 + ResNet34 → ResNet18 80.07

(E) Swin-fusion-ResNet18 + ResNet34-fusion-ResNet18 81.24

Table 3. Different distillation paradigm. Swin denotes the
Swin-Tiny model. Our method is the one-stage joint-optimization
teacher-fusion-student paradigm, which is orthogonal with pro-
gressive distillation like [1, 13].



(E) Mixer-B/16

(A) ResNet18

Features in different stages
Stage 1 Stage 2 Stage 3 Stage 4

(B) ResNet34

(C) Swin-Small

(D) Swin-Base

(F) ResMLP-S12

Group 1
Groups in the last stage

Group 2 Group 3

Figure 2. Diverse features in different models. The left figures are features in different stages (all models are divided into 4 stages). The
right figures are the final features in different groups (we divide the channels of final features into 3 groups). The spatial distribution of
features is diverse according to the channels, stages, and model architectures/functions.

D. Different distilling strategy

Multi-teacher progressive distillation is a training strat-
egy [13] and our FBT is a training algorithm. They are or-
thogonal and can be used together. As shown in (D-E) in
Tab. 3, we can replace the T.-S. with our T.-F.-S. paradigm
to improve the results in each stage of progressive distilla-
tion. Besides, using multi-teacher distillation, we can im-
prove the performance of a given student by applying our
FBT to both SAKD and CAKD.

Loss Top-1 accuracy
LMSE in all intermediate features 24.06

LMSE in the final features 65.17
LMSE in the final features after average pooling 76.79

LInfoNCE in the final features after average pooling 78.01

Table 4. FitNet [15] with LMSE vs. LInfoNCE loss on CI-
FAR100. The teacher is ConvNeXt-T (88.41% Top-1 accuracy)
and the student is Swin-P (72.63% Top-1 accuracy) on CIFAR100.
As shown, the smoothing features and LInfoNCE are more suitable
for cross-architecture distillations than the original features and
LMSE.



MSA Block T. S. T. S. T. S.
Swin-T ResNet18 ViT-S ResNet18 ConvNeXt-T Swin-P

ViT Block 81.05 80.74 80.72
Swin Block 81.61 81.93 80.34

Table 5. Our results with different MSA blocks. T. and S. denote the teacher and the student. ViT block is from ViT [5] and Swin block
is from Swin [12]. As shown, different blocks have different functions in different teacher-student pairs.

Teacher Student Student Params Student FLOPs OFA Branch Our Branch
Params FLOPs Params FLOPs

DeiT-T ResNet18 11.69 M 1.82 G 4.92 M 0.1 G 0.39 M 0.07 G
ResNet50 DeiT-T 5.68 M 1.08 G 5.81 M 0.25 G 0.54 M 0.10 G

ConvNeXt-T ResMLP-S12 15.32 M 3.01 G 21.64 M 0.99 G 1.48 M 0.29 G

Table 6. Training cost. The extra parameters of our FBT are about one-tenth of OFA [6]. The best results are bold.

E. Loss function for heterogeneous distillation.

In Tab. 4, we compare the results of FitNet with different
settings on the CIFAR100 dataset. Firstly, the accuracy im-
proves from 24.06 to 65.17 when we apply LMSE only to
features of the final stage, rather than intermediate stages.
This demonstrates the intermediate features are not suitable
for feature alignment in some cross-architecture teacher-
student pairs. Secondly, the accuracy improves from 65.17
to 76.79 when we apply average pooling to features of the
final stage. This demonstrates the diverse spatial distribu-
tions of features are not suitable for feature alignment in
some cross-architecture teacher-student pairs. Thirdly, the
accuracy improves from 76.79 to 78.01 when we replace
LMSE with LInfoNCE. This is because LInfoNCE considers
the releationships between different channels, but LMSE is
pixel-by-pixel.

F. L2G in our fused model.

As shown in Tab. 5, when we replace the Swin block [12]
with ViT block [5] in our L2G, the performance on different
teacher-student pairs has different rises and falls. Thus, the
MSA block in L2G is also important and is worth exploring
in future works.

Our L2G includes a patch embedding for dimension
alignments of features and an MSA block for global infor-
mation exchange.

Why do we use a patch embedding? The feature shape
of a CNN model with the size (N, C, H, W), while that of
an MSA/MLP model is denoted as (N, L, D). N indicates
the batch size, and C, H, and W refer to the channel, height,
and width of the CNN model’s feature map respectively. L
and D denote the patch number and embedding dimension
of the ViT/MLP model’s feature map. In our fused model,
to connect the features of CNN and MSA/MLP models, we
need to transform the feature map of the CNN model into
the MSA/MLP-style (shape) feature through a “patchify”

operation. Besides, the effectiveness of “divide image to
patches” has been demonstrated in CNN models [19], MSA
models [5, 12], and MLP models [10, 17, 18]. Therefore,
we use a patch embedding to process the CNN features.
More importantly, patch embedding is a kind of spatial
smoothing that is beneficial to align heterogeneous features.

Why do we use an MSA block? The extra MSA block
converts the local CNN features to a global receptive field,
which is more suitable to input the later MSA/MLP mod-
els. Besides, the later MSA/MLP models are frozen when
the teacher is the MSA/MLP model and the student is the
CNN model. In this case, a learnable MSA block plays an
important role in aligning heterogeneous features.

G. Training cost.
Beyond performance considerations, training cost is criti-
cal for the distillation. We compare the training cost of the
recent OFA [6] and our FBT framework in Tab. 6. In Fig
2 of our main paper, OFA uses four extra feature projec-
tors, but our FBT only uses one L2G to project the features
at the third stage of CNN models. Therefore, as shown in
Tab. 6, we introduce much fewer additional parameters and
FLOPs on par with OFA [6] under different combinations
of teacher and student models. Specifically, the number of
extra parameters is about one-tenth that of OFA when the
student and teacher are different architectures. As a result,
our FBT is more efficient than OFA [6].
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