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A. Implementation Details

In this section, we provide additional details to facilitate the
implementation and reproducibility of the proposed FINet.

A.1. Experiment Details

Our models are trained for 60 epochs using the AdamW op-
timizer [1] with a batch size of 16 per GPU. The training
process is end-to-end, utilizing a learning rate of 0.002 and
a weight decay of 0.01. An agent-centric coordinate system
is employed, with scene elements sampled within a 150-
meter radius of the target agents. All training is performed
on 10 NVIDIA RTX A5000 GPUs while inference is con-
ducted on a single NVIDIA RTX A5000 GPU with batch
size equals to one.

A.2. Architecture Details

We present the architecture details of the proposed method,
which consists of Lightweight Scene Encoder (LSEnc),
Future-Aware Interaction Mamba (FIM) and Temporal En-
hanced Decoder (TEDec).

Lightweight Scene Encoder (LSEnc) processes both
input trajectory data and lane data simultaneously. For tra-
jectory data processing, we employ four Mamba blocks.
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Figure A. Scan Order

For lane data processing, we utilize a PointNet architec-
ture consisting of two Conv-BatchNorm-ReL.U-Conv lay-
ers, followed by max pooling at the end.

Future-Aware Interaction Mamba (FIM) utilizes a
two-stage approach for spatial interaction modeling. In the
first stage, four Bi-Mamba blocks are applied, while in the
second stage, two Bi-Mamba blocks are used to refine the
results.

Temporal Enhanced Decoder (TEDec) consists of six
CAM blocks, each comprising a cross-attention block fol-
lowed by a Bi-Mamba block. Auxiliary supervision is ap-
plied at the output of the second CAM block.

The effectiveness of the number of layers is shown in
Tab. A.

A.3. Mamba Flops Computation

We use the widely adopted library thop' to compute the
model’s floating point operations per second (FLOPs).
Since Mambea is not a built-in module in PyTorch, we imple-
ment a customized version of the thop function to compute
the FLOPs for Mamba, following the suggestion in Mamba
official repository”, which points out that Mamba’s FLOPs
can be approximated as basic operation FLOPs plus selec-
tive scan mechanism (SSM) FLOPs:

FLOPS(SSM) =BxLx9x dmodel X dstate (1)

where B is the batch size (set to 1 during testing), L is the
sequence length, and dj,04e) and dgye represent the input and
internal state feature sizes, respectively.

Although Mamba significantly reduces FLOPs, its effi-
ciency improvement is not proportional, likely due to differ-
ences in hardware utilization between Mamba (SSM) and
Transformers. While Transformers have quadratic com-
plexity in sequence length and high FLOPs, they are highly
optimized for GPU parallelism with efficient matrix multi-
plications and attention kernels. In contrast, Mamba, de-
spite its lower FLOPs, relies more on sequential computa-
tion and memory-bound operations, which GPUs struggle
to parallelize efficiently. Additionally, Transformers benefit

Uhttps://github.com/Lyken17/pytorch-OpCounter
Zhttps://github.com/state-spaces/mamba/issues/110



FIM TEDec b-minFDE¢; (]) minADEg (]) minFDEg () MR (}) ‘ minADE; () minFDE, (})
2 2 2 4 1.95 0.66 1.29 0.16 1.61 4.07
2 4 2 4 1.97 0.66 1,31 9.16 1.60 4.05
4 2 2 4 1.93 0.65 1.27 0.15 1.57 3.94
4 4 2 4 1.97 0.66 1.31 0.16 1.60 4.04
4 2 2 2 1.94 0.65 1.28 0.15 1.58 3.97
4 2 2 4 1.93 0.65 1.27 0.15 1.57 3.94
4 2| 4 2 1.96 0.66 1.30 0.16 1.59 4.00
4 2| 4 4 1.95 0.65 1.29 0.16 1.58 3.98

Table A. Effect of the number of layers in both FIM and TEDec.

Method b-minFDEg (|) minADEg () minFDEg (|) MRg (J) ‘ minADE,; () minFDE, (|) MR, (})
QCNet* [2] 1.91 0.65 1.29 0.16 1.69 4.30 0.59
FINet (Ours)* 1.93 0.66 1.27 0.15 1.58 3.97 0.57
Gnet[3] 1.90 0.69 1.34 0.18 1.90 4.40 0.18
TENET[4] 1.90 0.70 1.38 0.19 1.90 4.69 0.19
MacFormer [5] 1.90 0.70 1.38 0.19 1.90 4.69 0.19
QML [6] 1.95 0.69 1.39 0.19 1.84 4.98 0.62
BANet [7] 1.92 0.71 1.36 0.19 1.79 4.61 0.60
Forecast-MAE [8] 1.91 0.69 1.34 0.17 1.66 4.15 0.59
QCNet [2] 1.78 0.62 1.19 0.14 1.56 3.96 0.55
FINet (Ours) ‘ 1.81 0.62 1.19 0.14 ‘ 1.55 3.87 0.56

Table B. Model ensemble results on Argoverse 2 dataset. We present the methods without model ensemble for reference, which are marked
with the symbol “*”. For each metric, the best result is in bold, and the second best result is underlined.

from extensive kernel optimizations (e.g., FlashAttention),
whereas Mamba’s operations may not yet be as optimized.
As a result, the real-world speedup remains limited despite
the substantial FLOP reduction. However, specialized hard-
ware designed for state-space models may mitigate this is-
sue by optimizing memory access patterns and accelerating
sequential operations, making Mamba more computation-
ally efficient in practice.

B. Additional Quantitative Results

In this section, to pursue a more comprehensive compari-
son, we provide additional quantitative results of the pro-
posed FINet.

B.1. Model ensembling

We demonstrate the results of the model ensemble, which
is a common technique to improve the accuracy of final
predictions, on the Argoverse 2 dataset. The experimen-
tal results are shown in Table B. Specifically, seven mod-
els are trained using different random seeds, learning rates,
and training epochs. A total of 42 future trajectories are
predicted for each agent, which are then clustered into six
centers using the k-means clustering algorithm. The final
predicted trajectories are determined by averaging the tra-
jectories within each cluster. From the experiment results,
We observe that the proposed method outperforms previous

approaches in overall performance. Given its superior ef-
ficiency and low latency, this model ensembling technique,
combined with the proposed method, holds great promise
for deployment in real-world applications, where previous
methods often suffer from inefficiency.

B.2. More Ablation Study
B.2.1. Effectiveness of MambaBlock

We evaluate the effectiveness of different modules in each
component of the proposed FINet, including the attention
module, single-direction Mamba (Si-Mamba), and bidirec-
tional Mamba (Bi-Mamba). The experimental results are
presented in Tab. C. For historical trajectory encoding in
the Lightweight Scene Encoder, we observe that both Si-
Mamba and Bi-Mamba outperform the attention module
by a significant margin. We attribute this to the Mamba
block’s suitability for sequential data processing, as its
scanning mechanism explicitly injects inductive bias. Fur-
thermore, Bi-Mamba achieves performance comparable to
Si-Mamba. For efficiency consideration, Si-Mamba is se-
lected in the proposed method. For spatial interaction mod-
eling in the Future-Aware Interaction Mamba, we observe
that Si-Mamba achieves performance similar to the atten-
tion module, while Bi-Mamba outperforms both. Con-
sequently, Bi-Mamba is chosen in the proposed method,
demonstrating the effectiveness of our design in adapting



Method  b-minFDEg (]) minADEg (}) minFDEg(]) | MRg () minADE; (J) minFDE, (})
Attn 1.98 0.69 132 0.17 1.74 425
LSEnc | Si-Mamba 1.93 0.65 1.27 0.15 1.57 3.94
Bi-Mamba 1.94 0.65 1.28 0.15 1.57 3.95
Attn 1.94 0.68 1.28 0.16 1.64 4.02
FIM Si-Mamba 1.98 0.66 1.32 0.16 1.60 4.04
Bi-Mamba 1.93 0.65 1.27 0.15 1.57 3.94
Attn 2.20 0.73 151 0.19 1.57 3.92
TEDec | Si-Mamba 1.94 0.65 1.29 0.16 1.58 3.99
Bi-Mamba 1.93 0.65 1.27 0.15 1.57 3.94

Table C. We evaluate the effectiveness of different module in various components of the proposed method. Specifically, “LSEnc” refers
to the Lightweight Scene Encoder, “FIM” represents the Future-Aware Interaction Mamba, and “TEDec” denotes the Temporal Enhanced
Decoder. Additionally, “Attn” stands for the Attention Module, “Si-Mamba” refers to the single-direction Mamba module, and “Bi-
Mamba” represents the bidirectional Mamba module. The module achieving the best performance is highlighted in bold.

Position b-minFDEs () minADEg (|) minFDEg () MRs () minADE; (}) minFDE; ()
Start 1.93 0.65 1.27 0.15 1.57 3.94
End 1.97 0.66 1.30 0.16 1.59 4.00

Table D. Inductive bias position.

the Mamba architecture for spatial interaction modeling. Fi-
nally, we evaluate future trajectory refinement in the Tem-
poral Enhanced Decoder. A similar conclusion is drawn:
the Mamba block excels over the attention module in se-
quential data modeling, as indicated by a clear performance
gap. However, Bi-Mamba demonstrates a slight perfor-
mance advantage over Si-Mamba and is therefore chosen
as the final design.

We observe that Si-Mamba excels in encoding trajectory
data, while Bi-Mamba is better suited for spatial interac-
tion modeling and trajectory refinement. We hypothesize
that the latter task demands a more comprehensive under-
standing of the entire input data, making Bi-Mamba a more
appropriate choice.

B.2.2. Inductive bias position

The effectiveness of the inductive bias, as demonstrated in
the main paper, plays a crucial role in accurately predicting
the future trajectory. We found that removing the inductive
bias or applying it to all future trajectory tokens results in
suboptimal performance. Here, we verify the optimal posi-
tion for incorporating it. In our experiments, we apply the
inductive bias either to the first future trajectory token or to
the last future trajectory token, with the results presented
in Tab. D. Our observations indicate that the former yields
significantly better performance. We hypothesize that plac-
ing the inductive bias at the beginning has the greatest im-
pact on subsequent tokens due to the scanning mechanism,
whereas placing it at the end substantially diminishes this
effect.

B.2.3. Supervision on predicted offset

We investigate the effectiveness of aligning the predicted
endpoint with the future ground truth trajectory endpoint,

with the experimental results presented in the tab. E. Our
observations indicate that learning both the first and sec-
ond endpoints without any supervision already yields strong
performance. However, applying the alignment strategy to
the first predicted endpoint has minimal impact on perfor-
mance. In contrast, applying alignment strategy to the sec-
ond predicted endpoint leads to noticeable improvements on
the K = 6 metrics and significant gains on the K = 1 met-
rics. This suggests that at later stages, tokens near the future
trajectory endpoint should have a greater impact, which is
achieved by placing these tokens at the end of the sequence
in ARS, whereas earlier stages should explore more freely
and focus on capturing general information. Finally, apply-
ing the alignment strategy to both predicted endpoints does
not lead to further performance improvement, which further
verify the above hypothesis.

B.2.4. FIM Scan Order

We explore the scan order of the Bi-Mamba block in Future-
Aware Interaction Mamba (FIM), where the tokens are al-
ready reordered using the adaptive reorder strategy (ARS).
The experimental results are presented in Tab. F. For clar-
ity, we visualize the scan order in Fig. A, where "Decreas-
ing” refers to scanning the sequence in order of decreasing
distance (adopted in our proposed method), while "Increas-
ing” scans the sequence in order of increasing distance. Our
observations show that the ”Decreasing” order consistently
achieves better overall performance compared to “Increas-
ing.” This suggests that information should first propagate
effectively from distant to closer points along the future tra-
jectory endpoints and then propagate back, rather than the
other way around.



RP1  RP2 | b-minFDEs () minADEg (]) minFDEs(}) | MRs (/) minADE; (J) minFDE; (})
1.94 0.65 1.28 0.16 1.62 4.10
v 1.94 0.66 1.29 0.16 1.62 4.09
v 1.93 0.65 1.27 0.15 1.57 3.94
v v 1.94 0.66 1.28 0.15 1.58 3.96

Table E. Supervision on predicted offset.

Method b-minFDE; () minADEg () minFDEg () | MR () minADE; () minFDE, (})
Increasing 1.94 0.65 1.28 0.16 1.59 3.98
Decreasing 1.93 0.65 1.27 0.15 1.57 3.94
Table F. FIM Scan Order.
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but also achieve overall better performance, particularly on
minFDE;. This demonstrates the effectiveness of our de-
sign.

C. Broader Impact and Limitations

C.1. Broader Impact

Our work leverages the highly efficient State Space Model,
specifically Mamba, for motion forecasting in autonomous
driving. By carefully adapting the Mamba architecture to
effectively model both spatial and temporal information,
our approach enables precise and reliable future trajec-
tory prediction while maintaining computational efficiency.
This efficiency is particularly crucial for real-world au-
tonomous driving applications, where onboard computa-
tional resources are often constrained, making fast and ac-
curate motion forecasting essential for safe and responsive
navigation.

C.2. Potential Limitations

Despite the advancements of the proposed method, certain
limitations remain. There is still significant room for per-
formance improvement, particularly in handling complex
scenarios where the method may struggle to generate suf-
ficiently accurate or diverse trajectories. Additionally, the
predicted trajectories at consecutive timestamps may lack
temporal consistency. In future work, we aim to refine both
historical and current predictions to enhance overall perfor-
mance and ensure smoother, more coherent trajectory pre-
dictions over time.

D. Public Resource Used

In this section, we acknowledge the use of the following
public resources, during this work:

E. More Qualitative Visualization.

More qualitative visualizations are shown in Fig. B, which
further demonstrate the proposed method can produce more
accurate and diverse future trajectories.
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Figure B. More qualitative visualization. We compare FINet to the state-of-the-art method, QCNet [2]. Blue arrows represent the predicted
future trajectories (K=6), while the denotes the ground truth future trajectory. The orange bounding box indicates the focal

agent, while the blue bounding boxes denote surrounding agents.
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