
Appendix

This document supplements the main paper as follows:

1. Dataset details (Section A).
2. More details about the training recipe and reproducibil-

ity (section B).
3. More visualizations and detailed tables (section C).

A. Additional Dataset Details

A.1. Fracture Simulation

(i) Bone. For elongated structures like limbs and ribs,
we used Blender’s skinning and subdivision surface tech-
niques to create realistic cylindrical hollows, replicating
bone morphology. We then applied the physics-based frac-
ture method from Breaking Bad [42] to generate 2–20 frag-
ments. The same approach was used for os coxae and ver-
tebrae, forming the simulated subset of the bone category.
(ii) Eggshell. Since scanned eggshells produce watertight
solid ellipsoids, we removed 98% of the concentric vol-
ume to simulate thin shells. We then applied the same
physics-based fracture method to generate realistic break-
age patterns. (iii) Ceramics. Given that ceramic objects
(e.g., bowls, pots, vases) closely resemble those in Breaking
Bad’s everyday category, we focused on scanning real frag-
ments and did not include a simulated subset. (iv) Lithics.
As an initial feasibility test, two generalized core morpholo-
gies were repeatedly virtually knapped with some random-
ized variation following methods described for the dataset
in [36] to produce core and flake combinations with varying
geometries.

A.2. FRACTURA Statistics

Table I presents detailed statistics for each category in
FRACTURA. We continue to expand both the dataset’s scale
and diversity, aiming to establish a comprehensive cyberin-
frastructure for the vision-for-science community.

Table I. Dataset Statistics of the FRACTURA Dataset.

Category Fracture Type # Assemblies # Pieces

Bone Real 17 37
Synthetic 7056 39943

Eggshell Real 3 12
Synthetic 2268 12600

Ceramics Real 9 51
Synthetic N/A N/A

Lithics Real 12 192
Synthetic 403 807

Total Real 41 292
Synthetic 9727 53350

B. Additional Implementation Details
B.1. Data Preprocessing
We preprocess the BreakingBad dataset [42] to calculate the
segmentation ground truth directly from meshes to reduce
the computation overhead during training as described in
Sec. 3.1, and there’s no need for any hyperparameters. Un-
like baseline methods (Global, LSTM, and DGL) provided
by the dataset and PF++ [50], which samples M = 1000
points from the mesh per fragment, we used the same set-
ting as in Jigsaw [30] to sample M = 5000 points per
object, making all fragments have the same point density.
With this sampling setting, we did not encounter any gra-
dient explosion issues during training, as reported in Frag-
mentDiff [56], which occur when sampling too many points
for tiny pieces. Meanwhile, we employ the Poisson disk
sampling method to ensure that the points are more uni-
formly distributed on the surface of the fragment. During
training, standard data augmentation techniques are applied,
including recentering, scaling, and random rotation.

B.2. Training Recipe
We modified a smaller version of Point Transformer V3 [54]
as our backbone for the segmentation pretraining, as shown
in Table II, which we found to be sufficient and more mem-
ory efficient. Since GARF uses a much larger training
dataset, we reduce the training epochs to 150, other than
the 400 epochs used in GARF-mini. Both pretrainings reach
over 99.5% accuracy on the validation set. Samples of seg-
mentation results are shown in Fig. I.

Figure I. Segmentation results on a real-world object (left), Break-
ing Bad [42] (center) and Fantastic Breaks [18] (right).

For FM training, we provide the hyperparameters in Ta-
ble II for reproducibility. The settings are identical for both
GARF and GARF-mini, as their only difference lies in the
pretraining stage.

B.3. Preliminaries on Riemannian Flow Matching
Instead of simulating discrete noise addition steps, flow
matching (FM) learns a probability density path pt, which

1

Table II. Training Configurations.

Config Value

Backbone

Encoder Depth [2, 2, 6, 2]
Encoder # Heads [2, 4, 8, 16]
Encoder Patch Size [1024, 1024, 1024, 1024]
Encoder Channels [32, 64, 128, 256]
Decoder Depth [2, 2, 2]
Decoder # Heads [4, 8, 16]
Decoder Patch Size [1024, 1024, 1024]
Decoder Channels [256, 128, 64]

Pretraining

Global Batch Size 256
Epochs 400 / 150
Learning Rate 1e-4
Scheduler CosineAnnealingWarmRestarts
Scheduler T0 100 / 50
Trainable Params 12.7M

Training

Global Batch Size 128
Epochs 1500
Learning Rate 2e-4
Scheduler MultiStepLR
Scheduler Milestones [900, 1200]
Scheduler γ 0.5
Trainable Params 43.5M

progressively transforms a noise distribution pt=0 to the
data distribution pt=1, with a time variable t ∈ [0, 1]. As a
simulation-free method aiming to learn continuous normal-
izing flow (CNF), FM models a probability density path pt,
which progressively transforms a noise distribution pt=0 to
the data distribution pt=1, with a time variable t ∈ [0, 1]. In-
spired by learning assembly by breaking, the rigid motion of
the fragments corresponds to the geodesic on the Lie group
SE(3), which is a differentiable Riemannian manifold. In-
spired by previous works [4, 11, 57], FM can be extended
to SE(3) manifold to learn the rigid assembly process.

On a manifoldM, the flow ψt :M→M is defined as
the solution of an ordinary differential equation (ODE):

d

dt
ψt(x) = vt(ψt(x)), ψ0(x) = x, (8)

where vt(x) ∈ TxM is the time-dependent vector field,
and TxM is the tangent space of the manifold at x ∈ M.
In the context of SE(3), the tangent space is the Lie algebra
se(3), which is a six-dimensional vector space, presenting
the velocity of the rigid motion of the fragments. Given
the conditional vector filed ut(x | x1) ∈ TxM, which
generates the conditional probability path pt(x | x1), the
Riemannian flow matching objective can be defined as:

LCFM := Et,p1(x1),pt(x|x1)

[
∥vt(x, t)− ut(x | x1)∥2G

]
,

(9)
where ∥ · ∥2G is the norm induced by the Riemannian metric
G. Then the learned vector field vt can be used to gener-
ate samples on the manifold at inference, which is SE(3)
poses of the fragments. The rigid motion of fragments cor-
responds to the geodesic on the Lie group SE(3), a differ-
entiable Riemannian manifold.

Table III. Results on Vanilla Breaking Bad [42] Dataset.

Methods RMSE(R) ↓ RMSE(T) ↓ PA ↑ CD ↓
degree ×10−2 % ×10−3

Tested on the Everyday Subset

Global [22] 80.70 15.10 24.60 14.60
LSTM [52] 84.20 16.20 22.70 15.80
DGL [59] 79.40 15.00 31.00 14.30

SE(3)-Equiv [53] 79.30 16.90 8.41 28.50
DiffAssemble [41] 73.30 14.80 27.50 -

PHFormer [7] 26.10 9.30 50.70 9.60
Jigsaw [30] 42.30 10.70 57.30 13.30
PF++ [50] 38.10 8.04 70.60 6.03

GARF-mini 10.41 1.91 92.77 0.45

Tested on the Artifact Subset

Jigsaw 52.40 22.20 45.60 14.30
PF++ 52.10 13.90 49.60 14.50

GARF-mini 11.91 2.74 89.42 1.05

Table IV. Ablation Study on Our Designs of FM.

SE(3) Multi-Anchor One-Step RMSE(R) ↓ RMSE(T) ↓ PA ↑
10.24 1.95 89.08
8.02 1.63 93.78
7.63 1.60 94.02
6.68 1.34 94.77

Table V. Ablation Study on Sample Steps.

Steps RMSE(R) ↓ RMSE(T) ↓ PA ↑ CD ↓ Speed (ms)

1 12.52 3.18 86.88 2.14 38.26
One-Step + 1 9.79 2.46 91.31 1.42 45.76

5 8.25 1.92 93.70 0.53 57.32
One-Step + 5 7.15 1.66 94.43 0.46 76.23

20 7.63 1.60 94.02 0.35 185.05
One-step + 20 6.68 1.34 94.77 0.25 190.77

50 7.50 1.54 94.01 0.32 408.40

B.4. More attention on large fragments

GARF provides tailored designs to place more attention on
large fragments. We observed that: (i) large fragments are
easier to assemble; (ii) tiny fragments sometimes lead to un-
stable training. Driven by these insights, we apply weighted
sampling based on the surface area of fragments and modify
the self-attention module to allow more attention on large
fragments.

𝑁𝑁1

𝑁𝑁2
𝑁𝑁3 𝑁𝑁4

𝑁𝑁3 < 𝑁𝑁2 < 𝑁𝑁1 < 𝑁𝑁4

𝑁𝑁1

𝑁𝑁2

𝑁𝑁3

𝑁𝑁4

𝑁𝑁3 = 𝑁𝑁2 = 𝑁𝑁1 = 𝑁𝑁4
Self-attention in GARF Self-attention in PuzzleFusion++

Uniform
sampling

Weighted
sampling

Figure II. Self-attention comparison between GARF (left) and Puz-
zleFusion++ [50] (right).

2

Table VI. Ablation Study on the Different Anchor Initializa-
tion.

Settings RMSE(R) ↓ RMSE(T) ↓ PA ↑ CD ↓
Largest Anchor 6.10 1.22 95.33 0.22
Random Anchor 6.09 1.30 95.20 0.29

Anchor-Free 9.09 2.13 93.23 0.91

Table VII. Comparison Between Diffusion and Our FM Mod-
els.

Dataset Methods RMSE(R) ↓ RMSE(T) ↓ PA ↑

Everyday

Diffusion 7.45 1.47 94.30
SE(3) Diffusion N/A N/A N/A

Diffusion w/ One-Step 7.51 1.47 94.27
Vanilla FM 10.24 1.95 89.08
GARF-mini 6.68 1.34 94.77

FRACTURA
Diffusion 32.38 7.90 71.73

GARF-mini 27.88 6.79 76.25

C. Additional Results and Analyses

C.1. Ablation on Design Choices in Flow Matching

We conduct an ablation study to evaluate the impact of
design choices in our FM module. As shown in Ta-
ble IV, vanilla FM, trained with spherical linear interpo-
lation (slerp) to approximate valid rotations in the forward
process [12], achieves 89.08 PA, already surpassing previ-
ous methods [30, 50]. Incorporating the SE(3) represen-
tation further improves performance by pre-modeling the
manifold distribution and better capturing distribution shifts
during assembly. Multi-anchor training strategy further en-
hances results, while one-step pre-assembly significantly
boosts performance by providing a more reasonable initial
pose distribution, leading to the best overall outcomes.

C.2. Ablation on Sample Steps

Table V shows the effect of varying sampling steps in
our framework. Surprisingly, even with just 5 steps, FM
achieves 93.70% PA, highlighting its effectiveness in mod-
eling global probabilistic paths. Additionally, our first-
session initialization provides a more reasonable initial
pose, further improving assembly quality while adding min-
imal computational overhead.

C.3. Ablation on Anchor Fragment

Similar to PF++ [50], we use the largest fragment as the
anchor fragment at inference. We compare the performance
of using the largest fragment, a randomly selected fragment,
and no anchor fragment. As shown in Table VI, using a ran-
dom fragment as the anchor fragment has almost no neg-
ative effect on the model. Only anchor-free initialization
leads to a slight performance drop.

C.4. Comparison with Diffusion Models

Table VII compares our FM module with diffusion models.
While diffusion, when paired with fracture-aware pretrain-
ing, achieves competitive performance, directly applying
vanilla FM yields lower results (89.08 PA), emphasizing the
importance of our subsequent design choices. A key limi-
tation of diffusion models is their handling of SO(3) rota-
tion, which cannot be naturally incorporated into the reverse
process. Existing methods, such as score prediction [58],
aim to maintain rotation validity but fall outside our current
scope. Additionally, diffusion models rely on multi-step de-
noising without explicitly modeling the global probabilistic
path, rendering one-step pre-assembly ineffective. Further-
more, on FRACTURA, diffusion models exhibit weaker gen-
eralization to unseen objects compared to GARF-mini.

C.5. Quantitative Results on Vanilla Breaking Bad

Given that all our previous experiments were conducted
on the volume-constrained version of the Breaking Bad
dataset [42], we here provide additional quantitative results
on the non-volume-constrained version to align with the
settings of previous methods. The results, shown in Ta-
ble III, demonstrate that our GARF-mini model still sig-
nificantly outperforms the previous state-of-the-art method,
PF++ [50], by a large margin. This performance is consis-
tent across both the everyday and artifact subsets, showcas-
ing the model’s robust generalization ability.

We also present the results of FragmentDiff [56] on their
custom Breaking Bad dataset in Table VIII. FragmentDiff
claims to remove tiny pieces, but it is unclear whether this
applies only to their training setting or also to evaluation.
Unfortunately, since they did not open source their code or
provide their preprocessed data, we are unable to directly
compare all other methods with FragmentDiff. Addition-
ally, they did not adhere to the common settings used by
other methods, which limit the number of pieces from 2
to 20, making direct comparisons on their provided met-
rics impossible. However, its significant performance drop
from the Everyday subset to the Artifact subset suggests that
GARF surpasses FragmentDiff in generalization capability.

C.6. Quantitative Results of Finetuning on the
FRACTURA Synthetic Dataset

After finetuning GARF on the FRACTURA synthetic dataset,
we report the per-category performance on the bone and
eggshell categories, as shown in Table IX. The results
demonstrate that finetuning the FM model in GARF sig-
nificantly improves performance on these two unseen cat-
egories, showing the effectiveness of our finetuning tech-
niques and the generalizability of our pretraining strategy.

3

Table VIII. FragmentDiff [56] Results on Their Custom Breaking
Bad Dataset.

Methods Subset RMSE(R) ↓ RMSE(T) ↓ PA ↑
degree ×10−2 %

FragmentDiff [56] Everyday 13.68 7.41 90.20
Artifact 18.18 8.12 82.30

Table IX. Quantitative Per-category Results on the FRACTURA

(Synthetic Fracture).

Category Method RMSE(R) ↓ RMSE(T) ↓ PA ↑ CD ↓
degree ×10−2 % ×10−3

Bone

Jigsaw 66.44 20.54 27.24 91.70
PF++ 66.28 20.50 29.81 47.78
GARF 17.70 3.80 85.18 5.11

GARFLoRA 8.79 1.10 98.19 0.34

Eggshell

Jigsaw 44.44 12.88 49.03 10.49
PF++ 54.81 13.81 61.36 1.50
GARF 22.48 6.16 83.41 0.67

GARFLoRA 7.10 1.95 95.68 0.26

C.7. Additional Qualitative Comparison on the
FRACTURA and Breaking Bad Dataset

Figures III, IV and V demonstrate more qualitative compar-
ison on the FRACTURA and Breaking Bad Dataset, where
our GARF shows superior performance than the other pre-
vious SOTA methods.

4

PuzzleFusion++ Ground TruthGARF (Ours)Jigsaw

Figure III. Qualitative Results on the FRACTURA Synthetic Dataset.

5

PuzzleFusion++ Ground TruthGARF (Ours)Jigsaw

Figure IV. Qualitative Results on the FRACTURA Synthetic Dataset.

6

PuzzleFusion++Jigsaw GARF (Ours) Ground Truth

Figure V. Qualitative Results on the Breaking Bad Dataset Artifact Subset.

7

	1 Introduction
	2 Fractura Dataset
	3 Method
	3.1 Why Large-Scale Fracture-Aware Pretraining?
	3.2 Flow-Based Reassembly on SE(3)
	3.3 Two-Session Flow Matching at Inference Time
	3.4 LoRA-based Fine-tuning

	4 Experiments
	4.1 Training and Evaluation Details.
	4.2 Can Garf Generalize to Unseen Shapes?
	4.3 How Do Fracture Types Affect Generalization?
	4.4 How Do Missing or Extraneous Parts Affect Performance?
	4.5 Ablation Study

	5 Impact and Limitations
	6 Related Work
	7 Conclusion
	A Additional Dataset Details
	A.1 Fracture Simulation
	A.2 Fractura Statistics

	B Additional Implementation Details
	B.1 Data Preprocessing
	B.2 Training Recipe
	B.3 Preliminaries on Riemannian Flow Matching
	B.4 More attention on large fragments

	C Additional Results and Analyses
	C.1 Ablation on Design Choices in Flow Matching
	C.2 Ablation on Sample Steps
	C.3 Ablation on Anchor Fragment
	C.4 Comparison with Diffusion Models
	C.5 Quantitative Results on Vanilla Breaking Bad
	C.6 Quantitative Results of Finetuning on the Fractura Synthetic Dataset
	C.7 Additional Qualitative Comparison on the Fractura and Breaking Bad Dataset

