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A. Implementation Details

Model Architecture. GENMO comprises 16 layers, each
consisting of a ROPE-based Transformer block followed by
a multi-text injection block. The ROPE-based Transformer
block incorporates a LayerNorm, a ROPE attention layer
with residual connections, and an MLP layer. Each atten-
tion unit features 8 attention heads to capture diverse mo-
tion patterns. The number of neurons in the MLP layer is
dmlp = 1024. The multi-text injection block maintains a
similar architecture to the ROPE-based Transformer block,
but replaces the standard attention with multi-text attention,
which processes text embedding sequences to enrich and
update the motion feature representations. The maximum
self-attention window size is W = 120.

Training Datasets. GENMO is trained from scratch on
a diverse set of mixed motion datasets, including mo-
tion estimation datasets AMASS [14], BEDLAM [1],
Human3.6M [5], 3DPW [26], music-to-dance dataset
AIST++[11], and text-to-motion datasets HumanML3D [3]
and Motion-X [12]. Since motion data in HumanML3D
are represented in their own format, we convert them to
SMPL parameters with inverse kinematics [9] for training.
For AMASS data lacking video, music, or text inputs, we
follow [20, 21] to simulate static and dynamic camera tra-
jectories and project 3D motions to 2D keypoints as input
conditions. The simulated camera trajectories are also used
as input conditions during training. Although AMASS and
HumanML3D share some motion sequences, we treat them
as independent datasets.

For Motion-X, we only utilize its 2D keypoints and text
descriptions due to noisy 3D ground truth. When train-
ing with BEDLAM and Human3.6M datasets, we use video
frames and 2D keypoints as conditioning inputs, with global
3D motions serving as target outputs. For the 3DPW
dataset, video frames and 2D keypoints are used as con-
ditions; however, since 3DPW provides only local 3D mo-
tions, we implement a strategy analogous to Lgen-2D: we
first generate pseudo-clean global human trajectories from
the estimation mode, then utilize these to produce noisy mo-

tions for training the generation mode, with loss computa-
tion restricted to local poses. For AIST++, training incor-
porates video frames, 2D keypoints, and music as condi-
tions. Regarding the camera condition, we utilize ground-
truth camera trajectories as the input condition for datasets
that either provide such trajectories or feature static cam-
eras; for datasets lacking labeled camera trajectories, we
employ DROID-SLAM [23] to generate camera trajecto-
ries as input conditions during training. We train a single
unified model on this comprehensive collection of datasets,
enabling evaluation across diverse motion-related tasks.

Condition Processing. For video conditions, we employ
a frozen encoder from TRAM [27], whereas for AMASS
data lacking video inputs, we utilize zero vectors as place-
holders. The 2D keypoint conditions undergo normaliza-
tion to the range [−1, 1] based on their bounding boxes,
which are further normalized by the focal length of their
corresponding video conditions. For music processing, we
extract features using the music encoder from EDGE [25],
while camera parameters are formulated as the camera-to-
world transformation and derived from input videos via
DROID-SLAM [23]. Textual descriptions are encoded
through the T5 encoder architecture [18].

Training Details. During training, we employ data aug-
mentation techniques on the 2D keypoints, including ran-
dom masking and Gaussian noise perturbation to enhance
model robustness. To further improve model robustness, we
implement random masking of input conditions through-
out the training process. We configure the sequence length
to N = 120 for training, while maintaining support for
variable sequence lengths during inference. The model is
trained from scratch for 500 epochs using the AdamW op-
timizer [13], with a mini-batch size of 128 per GPU dis-
tributed across 2 A100 GPUs.
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B. Evaluation Settings for Music-to-Dance
Generation

We evaluate the music-to-dance generation capabilities of
GENMO on the AIST++ [11] dataset. The same one-in-all
checkpoint is employed for evaluation as used in all other
tasks. Following established protocols [11, 25], our evalu-
ation encompasses four key aspects: motion quality, gener-
ation diversity, physical plausibility, and motion-music cor-
relation.

For motion quality and generation diversity assessment,
we compute the Fréchet Inception Distance (FID) [4] and
the average feature distance of generated motions using
both kinetic features [17] (denoted as “k”) and geomet-
ric features [16] (denoted as “g”) in accordance with Li et
al. [11].

To evaluate physical plausibility, we employ two
metrics: Mean Per Joint Position Error (MPJPE) and
Procrustes-aligned MPJPE (PA-MPJPE). Additionally, we
calculate the Physical Foot Contact score (PFC) as proposed
by Tseng et al. [25].

For quantifying motion-music correlation, we utilize the
Beat Alignment Score (BAS) following the methodology
of Li et al. [22]. This metric effectively measures the syn-
chronization between musical beats and motion transitions
by calculating the average temporal distance between each
kinematic beat and its nearest musical beat.

C. Evaluation Settings for Text-to-Motion
Generation

For evaluating text-to-motion generation on Hu-
manML3D [3], we utilize the pre-trained text and
motion encoders from [3] after converting our motion rep-
resentation to the HumanML3D format. This conversion
process involves first recovering the SMPL parameters
from our raw representation and subsequently deriving the
HumanML3D-format representation as described in [3],
employing the neutral gender SMPL model. Consistent
with established evaluation protocols, we report the vari-
ance across five different inference trials on HumanML3D.
The same one-in-all checkpoint is employed for evaluation
as used in all other tasks.

It is important to note that the conversion from SMPL to
HumanML3D format introduces some degradation in mo-
tion quality, as the predicted SMPL bone lengths do not
precisely match the HumanML3D skeleton, resulting in ar-
tifacts such as foot skating. To address this limitation and
provide a more comprehensive evaluation, we additionally
report the Fréchet Inception Distance (FID) and Diversity
metrics using both kinetic features [17] (denoted as “k”)
and geometric features [16] (denoted as “g”) based on 24
keypoints. Since the SMPL model and the HumanML3D
skeleton share an identical joint order, this approach enables

Table 1. Benchmark of Human Motion Generation. Motion
quality is evaluated on the 3DPW-XOCC [10] dataset.

Methods MPJPE ↑ PA-MPJPE ↓ PVE ↓ ACCEL →

HybrIK [9] 148.3 98.7 164.5 108.6
PARE [8] 114.2 67.7 133.0 90.7
PARE [8] + VIBE [7] 97.3 60.2 114.9 18.3
NIKI (frame-based) [10] 110.7 60.5 128.6 74.4
NIKI (temporal) [10] 88.9 52.1 98.0 17.3

Ours (Regression-only) 89.0 50.2 103.8 21.1
Ours 76.2 48.4 94.2 17.1

direct comparison of GENMO’s motion quality with state-
of-the-art methods using keypoint-based metrics.

For the evaluation on Motion-X [12], we implemented
our own text and motion encoders, as the original encoders
were provided by [12] and their implementation details
were not disclosed in the literature. Unlike HumanML3D,
Motion-X text prompts lack frame-based keywords, neces-
sitating a different approach to text encoding. We employed
a pre-trained CLIP language model with its corresponding
tokenizer to process the raw text prompts, generating em-
beddings with a dimension of 512, consistent with the rep-
resentation used in [3]. The same one-in-all checkpoint is
employed for evaluation as used in all other tasks. For eval-
uation purposes on the Motion-X dataset, we utilized these
trained encoders with frozen weights to ensure consistent
and comparable feature extraction across all test samples.

D. Evaluation Settings for Motion In-
betweening

For motion in-betweening evaluation, we adopt the method-
ology established in prior diffusion-based approaches [24],
wherein the noisy motion is overwritten with desired poses
at specified keyframes prior to each denoising step. The
same one-in-all checkpoint is employed for evaluation as
used in all other tasks. Due to the constraints of our fea-
ture representation, which lacks global root information, we
only overwrite the local body poses and global root ori-
entation for the keyframes. We evaluate our approach on
both the HumanML3D and Motion-X test sets under two
experimental conditions: sampling either 2 or 5 keyframes
from each test motion. For Motion-X, we utilize the recon-
structed 3D motion as described in [12]. Additionally, we
incorporate textual descriptions from these datasets as con-
ditioning input. To account for the generative diversity of
our model, we sample N = 10 different initial noise vec-
tors for each test motion and execute the diffusion process
with 50 denoising steps. For evaluation metrics, we report
the minimum values among these diverse samples, which
effectively captures the best performance achievable by our
generative approach.
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Figure 1. Motion generation with spatial constraints. Top: sparse head position control. Bottom: dense pelvis trajectory control.

E. Motion Generation with Spatial Constraints

Similar to other state-of-the-art motion generation ap-
proaches, GENMO is capable of synthesizing human mo-
tions under explicit spatial constraints. Leveraging the
flexibility of the diffusion-based framework, we employ
classifier-free guidance to effectively control the generated
motions without necessitating additional retraining. Repre-
sentative examples illustrating spatially constrained motion
generation are presented in Figure 1.

F. Evaluation on Occlusion-Specific Bench-
mark

To evaluate the efficacy of generative priors in enhanc-
ing motion estimation robustness, we conducted compre-
hensive experiments on the 3DPW-XOCC benchmark [10].
This benchmark specifically evaluates 3D human pose esti-
mation under challenging conditions of extreme occlusion
and truncation, simulated through strategic placement of
random occlusion patches and frame truncations. As evi-
denced in Table 1, GENMO demonstrates superior perfor-
mance compared to state-of-the-art human motion estima-
tion methods, including those explicitly designed to handle
occlusions. Notably, our ablation study reveals that a vari-
ant of our model trained without generative tasks exhibits
worse performance compared to the complete GENMO
model. These findings substantiate that the generative pri-
ors incorporated within GENMO significantly enhance the
plausibility and accuracy of estimated human motions un-
der visually challenging scenarios, thereby underscoring the
practical utility of our approach in real-world applications
where occlusions frequently occur.

Table 2. Ablation Study. Camera-space motion estimation on the
3DPW [26] dataset.

Methods PA-MPJPE ↑ MPJPE ↓ PVE ↓ ACCEL →

Cross-attention Fusion 50.2 80.8 98.2 8.9
MLP Fusion 34.6 53.9 65.8 5.2

G. Additional Ablation Study
G.1. MLP Fusion vs. Cross-Attention Fusion
Cross-attention fusion is a widely adopted technique for in-
tegrating text and motion features. While it is straightfor-
ward to extend cross-attention modules to fuse video-based
conditions, we observe that MLP-based fusion offers su-
perior temporal alignment between modalities. To empir-
ically validate this, we compare the camera-space motion
estimation performance of MLP fusion and cross-attention
fusion in Table 2. The results demonstrate that effective
temporal alignment is critical for achieving accurate motion
estimation. Furthermore, we observe that models employ-
ing cross-attention fusion require more training iterations to
converge and exhibit less stable training loss compared to
their MLP fusion counterparts.

H. Additional Related Work
H.1. Generative Priors for Estimation
Recent advances in computer vision have demonstrated the
efficacy of leveraging generative priors from large-scale im-
age models, such as StableDiffusion [19], for various esti-
mation tasks. These approaches fine-tune diffusion-based
generative models to predict geometric and semantic prop-
erties, including depth maps, surface normals, and seman-
tic segmentation [2, 6, 15]. By repurposing the rich la-
tent representations encoded in pre-trained generative mod-
els, these methods achieve substantial improvements in esti-
mation accuracy across diverse visual understanding tasks.
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Figure 2. Qualitative comparisons on motion estimation.

Nevertheless, a significant limitation of these approaches is
their tendency to sacrifice the inherent generative capabili-
ties of the original models, as they predominantly focus on
deterministic estimation outcomes rather than maintaining
the ability to produce diverse outputs.

Our work fundamentally diverges from these approaches
by introducing a unified framework that seamlessly inte-
grates motion generation and estimation within a single co-
herent model. In contrast to previous methods that com-
promise generative capabilities during the fine-tuning pro-
cess, our framework maintains both the stochastic diversity
essential for high-quality generation and the deterministic
precision required for accurate estimation. This dual ca-
pability represents a significant advancement in leveraging
generative priors for human motion understanding.

I. Limitations and Failure Cases

At present, GENMO depends on off-the-shelf SLAM algo-
rithms to estimate camera parameters for video-conditioned
motion generation. Consequently, failures in SLAM track-
ing cannot be rectified by GENMO, resulting in inconsisten-
cies between camera-space and world-space motions. Fur-
thermore, in scenarios lacking explicit foot-ground contact
between the human subject and the environment, the fidelity
of the generated motions becomes highly contingent on the
reliability of SLAM tracking, which is prone to failure in
such cases.
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