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This supplementary material provides a detailed expla-
nation of three key components of our proposed LARM
framework, including (A) multimodal distillation loss, (B)
text-guided meta-feature selection, and (C) the process of
generating textual descriptions using GPT. (D) provide ex-
tension experiments. Each section elaborates on the imple-
mentation details and the underlying reasoning.

A. Multimodal Information Distillation Train-
ing Process

To enhance the representational power of the visual back-
bone with textual information, we employ a multimodal
distillation loss mechanism based on contrastive learning.
The multimodal distillation process aligns the visual proto-
types Pi with their corresponding textual features ti,j , en-
suring that semantically similar visual and textual features
are closer in the embedding space.

1. Text Feature Extraction
For a dataset with N categories, we generate M textual de-
scriptions per category using GPT (details in Section C).
These descriptions are encoded using CLIP’s textual en-
coder [2] and a text adapter to produce text features:

T = {Ti}Ni=1 , where Ti = {ti,j}Mj=1 .

Here, ti,j ∈ Rd represents the textual feature of the j-th
description for the i-th category.

2. Visual Prototypes
The visual prototypes P = {pi}Ni=1 are extracted from the
visual backbone. Each prototype pi ∈ Rd represents the
aggregated feature of the i-th category in the feature space.

3. Contrastive Loss and Segmentation Loss
The training process on base categories incorporates two
key loss functions: the contrastive loss Lcon and the seg-
mentation loss Lseg. These losses are combined to form the
total training objective.

Contrastive Loss. The contrastive loss Lcon aligns visual
prototypes P = {pi}Ni=1 with their corresponding textual
features T = {Ti}Ni=1 (details in Section A.1 and A.2).
It ensures semantic consistency between visual and textual

modalities while maintaining discriminative power across
categories:
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where sim(p, t) = p·t

∥p∥∥t∥ is the cosine similarity, and τ >

0 is a temperature parameter.

Segmentation Loss. The segmentation loss Lseg is a stan-
dard cross-entropy loss applied to the point-wise predictions
of the model. It uses the ground-truth labels of base cate-
gories as supervision to train the feature extractor and base
classifier. Formally, it is defined as:
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where:
• Dbase = {(Pb

k,M
b
k)}

|Dbase|
k=1 is the base category training

set.
• Pb

k ∈ Rl×d is the point cloud with l points and d features.
• Mb

k represents the ground-truth supervision for Base cat-
egories.

• M̂b
k is the model’s predicted probability for each point

belonging to the corresponding Base category.

Total Loss. The total loss function for training on the base
categories is a weighted combination of the contrastive loss
and segmentation loss:

Ltotal = Lseg + λLcon,

where λ = 0.1 is a weighting parameter balancing the two
losses. This combination allows the model to learn both
multimodal alignment (via Lcon) and accurate point-level
segmentation (via Lseg).

Supervised Training on Base Categories. The total loss
Ltotal is used exclusively during the supervised training
phase on base categories Cb. This ensures that the back-
bone learns discriminative features for Base classes while
also aligning the visual features with textual descriptions in
a shared multimodal space. Specifically, the contrastive loss
Lcon enforces the semantic consistency between visual pro-
totypes P and textual features T for Base categories, mak-
ing their embeddings closer in the joint visual-textual fea-
ture space.



Impact on Novel Categories. Although the multimodal
alignment is explicitly performed only on the base cate-
gories during training, this alignment benefits the novel cat-
egories as well. By aligning the visual and textual em-
beddings in a unified space, the model implicitly maps
novel categories into the same multimodal space during
fine-tuning. This is because the textual features for both
base and novel categories are drawn from the same textual
embedding space (e.g., CLIP’s textual encoder), which is
pretrained to capture general semantic relationships across
a wide range of categories. When novel categories are fine-
tuned using limited support samples, their visual features
naturally align with their corresponding textual features in
the shared multimodal space. This occurs because the vi-
sual backbone, already trained to align base category vi-
sual features with textual features, generalizes this align-
ment mechanism to novel categories due to the shared text
embedding space and the transferable nature of the learned
visual-textual alignment.

Conclusion. The multimodal alignment achieved during
Base category training not only ensures discriminative and
semantically aligned features for base classes but also pro-
vides a robust foundation for aligning visual and textual
features of novel categories in the same multimodal space.
This shared alignment mechanism effectively compensates
for the scarcity of labeled Novel category samples and im-
proves the model’s generalization performance.

B. Text-Guided Meta-Feature Selection

The text-guided meta-feature selector leverages textual fea-
tures to enhance novel category representation by extracting
relevant information from base category prototypes.

Why Text-Guided Channel-Wise Attention Selects
Relevant Meta-Features

The text-guided channel-wise attention mechanism is based
on the premise that textual features, derived from a pre-
trained language model (e.g., GPT), encode rich semantic
information about categories. This semantic information
can be leveraged to identify and extract meta-features from
Base category prototypes that are most relevant to a given
novel category. Further, texts are more controllable and ac-
cessible compared to visual features [4, 6], making them
particularly suitable for guiding the attention mechanism to
focus on relevant features.

1. Textual Features as Semantic Queries. Textual fea-
tures Tni

for a novel category ni are vectorized representa-
tions that capture high-level semantic meaning. These fea-
tures inherently encode relationships between categories in

a shared textual embedding space. For instance, textual de-
scriptions of “table” may share semantic similarities with
“bed” or “chair” because they belong to similar semantic
groups. By using Tni

as a query in the attention mechanism,
we guide the model to identify the most relevant informa-
tion in the base category prototypes Pb that can contribute
to constructing a meaningful representation for the novel
category.

Importantly, texts can be conveniently processed by large
pre-trained LLMs (e.g., GPT) to generate diverse and se-
mantically rich representations [4, 6]. For example, a tex-
tual description like “a table with four legs and a flat sur-
face” can be encoded into a high-dimensional vector that
captures multiple semantic dimensions, such as shape, func-
tionality, and structure. This multi-dimensional seman-
tic representation enables the attention mechanism to ex-
plore base category prototypes Pb from various perspec-
tives, identifying meta-features that are relevant and trans-
ferable to the novel category. Unlike visual data, which is
often constrained by factors such as image quality, view-
point, or occlusion, textual representations are inherently
abstract and can encode a broader range of semantic rela-
tionships. By leveraging these diverse textual representa-
tions, the attention mechanism can better guide the selec-
tion of useful information from Base categories, ensuring
that the extracted meta-features align with the semantic re-
quirements of the novel category.

2. Why Channel-Wise Attention Works for Meta-
Feature Selection. Channel-wise attention operates on
the feature channels of base prototypes Pb, where each
channel corresponds to a dimension in the feature space
learned by the visual backbone. In deep neural networks,
feature channels often represent specific patterns or at-
tributes [7] (e.g., texture, shape, color, or object parts). For
example, one channel may encode “flat surfaces”, while
another may encode “four-legged structures”. This phe-
nomenon has been supported by prior work in the inter-
pretability of convolutional neural networks [7], where fea-
ture channels were shown to correspond to disentangled se-
mantic concepts, such as object shapes, textures, or specific
parts of objects (e.g., table legs or tabletops).

By applying attention on the channel dimension, the
model effectively selects the feature channels in Pb that are
most relevant to the novel category’s textual semantics. The
mechanism can be understood as a soft feature selection
process, where attention weights assign higher importance
to channels that contribute to the novel category’s represen-
tation, while suppressing irrelevant channels. Because text
features are semantically rich and accessible, they provide a
powerful signal to guide this selection process, ensuring that
the selected meta-features are both meaningful and transfer-
able.



C. Generating Textual Descriptions Using
GPT
1. Prompt Design
To generate high-quality textual descriptions for each cat-
egory, we adopt 3D-specific heuristic prompt templates in-
spired by [4, 8]. The templates include:
• Caption Generation: “Describe a point cloud of a

[CLASS] in one sentence.”
• Question Answering: “How to describe a point cloud of a

[CLASS]?”
• Paraphrase Generation: “Generate a synonym: A point

cloud of a [CLASS].”
• Words to Sentence: “Make a sentence with words: point

cloud, [CLASS], obscure.”

2. Text Generation Process
For a point cloud dataset with N categories, we replace the
placeholder “[CLASS]” in the templates with each cate-
gory name. Each template is sent as a prompt to GPT-3 [1],
configured with a temperature of 0.7 to encourage diversity.
GPT generates M unique descriptions per category, which
are stored for further processing.

3. Text Encoding
The generated descriptions are encoded using CLIP’s tex-
tual encoder [2] to produce textual features. A text adapter
is further applied to align the textual features with the visual
feature space, resulting in the final text features:

T = {Ti}Ni=1 , Ti = {ti,j}Mj=1 .

4. Integration with Multimodal Training
The textual features T are integrated into the multimodal
distillation loss (Section A) and the text-guided meta-
feature selector (Section B) to enhance the multimodal rep-
resentation capabilities of the model.

5. GPT-Generated Examples
Figure S1 presents examples of diverse text descriptions
generated by GPT, demonstrating its ability to effectively
complement the original visual features. These generated
descriptions are particularly beneficial for novel categories.

D. Extended Experiments
1. Effects of different LLMs.
We conducted additional experiments using Llama-2 to
generate category descriptions under the same experimen-
tal settings on the S3DIS dataset (1-shot setting), as shown
in Tab. S1. While minor performance differences are ob-
served across LLMs, all variants of our method consistently
outperform existing SOTA methods.

Table S1
Methods mIoU-B mIoU-N mIoU-A HM
GW [5] 74.10 29.66 53.58 41.92
PE [3] 74.54 39.78 58.50 51.34

Ours (LLaMA-2) 75.03 42.79 60.15 54.88
Ours(gpt-3.5) 75.68 44.52 61.29 56.04

Table S2
Number of Agents (K) mIoU-B mIoU-N mIoU-A HM

2 75.22 43.93 60.78 55.44
4 75.68 44.52 61.29 56.04
6 75.53 44.46 61.19 55.96
8 75.16 44.30 60.92 55.73

Table S3
Descriptions mIoU-B mIoU-N mIoU-A HM

Caption 75.06 43.28 60.39 54.90
QA 74.83 42.79 60.04 54.45

Paraphase 74.52 42.15 59.58 53.84
Word-to-Sectence 74.71 42.33 59.77 54.29

Combination 75.68 44.52 61.29 56.04

Figure S2

GT Baseline w/ LAM w/ HRM

2. Discussion of prompt engineering.
To further assess prompt sensitivity, we conducted a con-
trolled experiment (see Tab. S3) using only one prompt
type at a time, with the number of descriptions fixed at
6. This isolates the impact of each individual prompt de-
sign. Results show that although all prompt types contribute
positively, the combination of diverse prompts consistently
outperforms any single type, confirming the advantage of
prompt diversity.

3. More ablation about the HRM.
Our additional ablation on HRM ( Tab. S2) shows optimal
performance at K=4, which indicates that a moderate num-
ber of reference agents balances diversity and avoids noise
from over-partitioning.

3. More visualization results.
As GFS-3DSeg is inherently a challenging task, the overall
performance is still behind fully supervised methods, which
may result in some visual noise. Nonetheless, we provide
additional qualitative results in Fig. S2 to better illustrate
the effectiveness of each module.
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Describe a point cloud of a table in one sentence.

A dense collection of three-dimensional points representing the surface and edges of a 

rectangular table, capturing the detailed geometry and structure of the object.

A dense collection of points representing the 3D structure and surface details of a chair, captured 

from multiple angles and perspectives.

A point cloud of a door would consist of a dense collection of XYZ coordinates representing the 

surface geometry and details of the door in three-dimensional space.

How to describe point cloud of a table.

A table point cloud is a digital representation of a table created using point cloud technology. 

Point clouds are made up of millions of points in 3D space that are generated by scanning an 

object or environment using specialized equipment such as LiDAR scanners.

A door point cloud is a digital representation of a door created using 3D scanning technology. It 

consists of a large collection of points in 3D space that accurately capture the dimensions, shape, 

and texture of the door.

Describe a point cloud of a chair in one sentence.

Describe a point cloud of a door in one sentence.

How to describe point cloud of a chair.

A chair point cloud is a 3D representation of a chair created by collecting a large number of points 

in space that accurately capture the shape and dimensions of the chair. Each point in the point 

cloud represents a specific coordinate in 3D space.

How to describe point cloud of a door.

(1) Caption Generation

(2) Question Answering 

A table's point cloud: a collection of points representing the shape and dimensions of a table.

Generate a synonym: A point cloud of a table.

A chair's 3D representation.

Generate a synonym: A point cloud of a chair.

A door’s volumetric representation.

Generate a synonym: A point cloud of a door.

The point cloud data provided a detailed 3D representation of the table, making 

previously obscure features easily visible.

Make a sentence with words: point cloud, table, obscure.

The point cloud data helped us create an accurate digital representation of the obscure details on the 

chair

Make a sentence with words: point cloud, chair, obscure.

The point cloud data helped to create an accurate 3D model of the obscure door in the abandoned 

building.

Make a sentence with words: point cloud, door, obscure.

(3) Paraphrase Generation

(4) Word to Sentence

Figure S1. The descriptions examples generated by GPT.
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