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A. Implementation Details
In this section, we provide additional details to facilitate the
implementation and reproducibility of the proposed GA-
MonoSSC.

A.1. Experiment Details
We use the AdamW optimizer with an initial learning rate
of 2×10−4 for the NYUv2 dataset (30 epochs) and 1×10−4

for the Occ-ScanNet-mini (60 epochs) and Occ-ScanNet
(10 epochs) datasets. A learning rate decay is applied dur-
ing training to ensure effective convergence. The model is
trained on 2 NVIDIA A40 GPUs for the NYUv2 and Occ-
ScanNet-mini datasets, while Occ-ScanNet, due to its sig-
nificantly larger scale, is trained on 8 NVIDIA A40 GPUs.
The batch size is set to 2 per GPU.

A.2. Architecture Details
We present the architecture details of the proposed method,
which consists of Dual-head Multi-modality Encoder
(DMEnc), Features Line of Sight Projection (FLoSP) and
Frustum Mamba Decoder (FMDec).

Dual-head Multi-modality Encoder (DMEnc) is em-
ployed to extract 2D features. It consists of a vision trans-
former encoder Enc and two modality-specific decoders,
Decsem and Decgeo, which separately decode semantic
and geometric features. Specifically, Enc consists of four
transformer encoder blocks, each composed of multiple
transformer encoder layers, and is initialized with Dinov2
[2] pre-trained weights. The output tokens from each stage
are fed into the modality-specific decoders to generate the
final multi-scale feature maps.

Features Line of Sight Projection (FLoSP) was intro-
duced in [1] and is designed to unproject 2D features into
3D voxel space. The camera intrinsic parameters are as-
sumed to be known. Each 3D voxel centroid (xc) is pro-
jected onto the 2D image plane, where the corresponding
2D features from DMEnc are sampled:

FX,3D = Φρ(xc)(FX), (1)

where X represents either semantic information (sem) or
geometric information (geo). Φa(b) denotes the sampling
of b at coordinates a, while ρ(·) represents the perspective
projection. Voxels projected outside the image are assigned
a feature vector of 0. The resulting feature map FX,3D

serves as input to the FMDec.
Frustum Mamba Decoder (FMDec) is designed to cap-

ture long-range dependencies in 3D space for accurate
scene completion and semantic information inference. It
follows a 3D U-Net-like architecture, consisting of an en-
coder and a decoder, each with two stages. A skip connec-
tion is introduced between each encoder stage and its cor-
responding decoder stage. The proposed Frustum Mamba
Layers is primarily applied in the encoder. The input multi-
scale semantic features are first fused into a unified feature
volume. A 3D convolution block is then applied to intro-
duce inductive bias, followed by two Frustum Mamba Lay-
ers, which process the features while progressively reducing
resolution. Next, the 3D Context Relation Prior (3D CRP)
proposed in [1] is applied to model voxel relationships. Fi-
nally, the decoder employs 3D Residual blocks and progres-
sive upsampling to restore the original resolution and gen-
erate the final prediction.

A.3. Supervision Details
In this section, we provide a detailed description of the
training loss, which is primarily based on [1].

Scene-Class Affinity Loss
This loss aims to enable the model to be aware of the

global SSC performance by directly optimizing scene-level
and class-level metrics, including (P)recision, (R)ecall, and
(S)specificity. Among these metrics, Pc and Rc evaluate
the performance of voxels belonging to class c, while Sc

assesses the performance of voxels that do not belong to
class c:

Pc(p̂, p) = log

∑
i p̂i,cI[pi = c]∑

i p̂i,c
, (2)

Rc(p̂, p) = log

∑
i p̂i,cI[pi = c]∑

i I[pi = c]
, (3)



Sc(p̂, p) = log

∑
i(1− p̂i,c)(1− I[pi = c])∑

i(1− I[pi = c])
, (4)

where pi is the ground truth class of voxel i, and p̂i,c is
its predicted probability of being class c. I[·] represents
the Iverson brackets. The Scene-Class Affinity Loss op-
timizes both semantic Lsem

scal = Lscal(ŷ, y) and geometric
Lgeo

scal = Lscal(ŷ
geo, ygeo). {y, ygeo} are semantic and ge-

ometric labels with respective predictions {ŷ, ŷgeo}. Lscal
builds on the affinity loss in [3]:

Lscal(p̂, p) = − 1

C

C∑
c=1

(Pc(p̂, p)+Rc(p̂, p)+Sc(p̂, p)). (5)

Frustum Proportion Loss
This loss captures the impact of occlusion by partitioning

the 3D space into multiple small, non-overlapping frustums
and explicitly enforcing consistency in the class distribution
within each frustum k using the Kullback-Leibler (KL) di-
vergence:

Lfp =

ℓ2∑
k=1

DKL(Pk∥P̂k) =

ℓ2∑
k=1

∑
c∈Ck

Pk(c) log
Pk(c)

P̂k(c)
. (6)

Here, Pk represents the ground truth class distribution of
voxels within frustum k, and Pk,c denotes the proportion
of class c in k. P̂k and P̂k,c are their corresponding soft
predicted distributions, obtained by summing per-class pre-
dicted probabilities.

Context Relation Loss
The relation matrices Âm are inferred from the 3D Con-

text Relation Prior (3D CRP), where each matrix encodes a
unique relation m ∈ M. These matrices are supervised us-
ing a relation loss defined as a weighted multi-label binary
cross-entropy loss:

Lrel = −
∑

m∈M,i

[
(1−Am

i ) log(1− Âm
i ) + wmAm

i log Âm
i

]
,

(7)
where i loops through all elements of the relation matrix,
Am represents the ground truth, and the weight term wm is
defined as:

wm =

∑
i(1−Am

i )∑
i A

m
i

. (8)

The total training loss with be:

Ltotal = LCE + LBCE + Lrel + Lsem
scal + Lgeo

scal + Lfp. (9)

where LCE represents the final class-weighted cross-
entropy loss, and LBCE denotes the binary cross-entropy
loss applied to the output of Decgeo.

B. Additional Quantitative Results
In this section, to pursue a more comprehensive compari-
son, we provide additional quantitative results of the pro-
posed GA-MonoSSC.

2D Enc 3D Dec NYUv2 Occ-ScanNet-mini
IoU mIoU IoU mIoU

ISO ISO 47.11 31.25 51.03 39.08
ISO Ours 46.80 31.09 55.61 45.10
Ours ISO 47.20 31.68 57.04 45.56
Ours Ours 47.51 32.32 58.97 48.19

Table A. Component Interchange with ISO.

B.1. Component Interchange with ISO
To validate the effectiveness of our design, we interchange
the 2D encoder and 3D decoder between the proposed
GA-MonoSSC and the previous state-of-the-art method,
ISO, and evaluate their performance on the NYUv2 and
Occ-ScanNet-mini datasets. The experimental results, pre-
sented in Table A, show that the proposed method signifi-
cantly outperforms ISO on both datasets, with an especially
large margin on the large-scale Occ-ScanNet-mini dataset.
This demonstrates the model’s strong scalability to large
datasets, attributed to its global modeling capability in both
the 2D image domain and 3D space. Replacing either the
2D encoder or 3D decoder in the proposed method results
in a noticeable performance drop, highlighting the effec-
tiveness of our design. Specifically, integrating our 2D en-
coder with the ISO 3D decoder outperforms the original
ISO model on both datasets. In contrast, replacing our 2D
encoder with the ISO 2D encoder while retaining our 3D
decoder results in a slight performance drop on the NYUv2
dataset compared to the original ISO. We attribute this to
the small scale of the NYUv2 dataset, as the Mamba-based
architecture excels at modeling global context and benefits
from larger training data. This is further validated by the
results on the large-scale Occ-ScanNet-mini dataset, where
this architecture significantly outperforms the original ISO.

C. Broader Impact and Limitations
C.1. Broader Impact
Our model enables more accurate Monocular Semantic
Scene Completion by incorporating global awareness in
both 2D and 3D ccomponents. By introducing a transformer
architecture into the 2D feature extraction process, the irreg-
ular distribution of projected 3D points is mitigated, allow-
ing for the extraction of more representative information.
Furthermore, the State-Space Model enables the 3D model
to capture long-range dependencies, which was challenging
in previous methods due to high computational costs.



C.2. Potential Limitations
Despite the advancements of the proposed method, certain
limitations remain. There is still considerable room for per-
formance improvement, particularly in handling complex
scenarios where the method may struggle to recover de-
tailed 3D structures and accurately detect semantic infor-
mation. Additionally, model efficiency can be further opti-
mized, which is crucial for real-world applications but has
not been a primary focus in current works. In future work,
we aim to enhance both model efficiency and performance.

D. Public Resource Used
In this section, we acknowledge the use of the following
public resources, during this work:
• Pytorch 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pytorch License
• ISO 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• MonoScene 3 . . . . . . . . . . . . . . . . . . . . .Apache License 2.0
• NDCScene4 . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• ScanNet 5 . . . . . . . . . . . . . . . . . . . . . . . . Apache 2.0 License
• NYUv26 . . . . . . . . . . . . . . . . . . . . . non-commercial license

E. More Qualitative Visualization.
More qualitative visualizations on the OccScanNet dataset
are presented in Fig. A. These results further demonstrate
that the proposed method can infer more detailed 3D struc-
tures and accurately detect relevant semantic information.
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Figure A. Qualitative Results on OccScanNet dataset.
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