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Supplementary Material

1. Details on Training Hydra-NeXt
In this section, we provide the details on training Hydra-
NeXt such as loss functions and the formulation of the dif-
fusion policy πdp. The three policies used in Hydra-NeXt
(πtraj , πctrl, and πdp) are all trained end-to-end simultane-
ously on the Bench2Drive dataset [11], which is collected by
the RL-based expert Think2Drive [12]. External data from
different experts such as PDMLite [2] are not used.

1.1. πtraj: Trajectory Decoder
The loss of πtraj is consistent with Hydra-MDP [13], which
consists of two terms: an imitation loss Lim and a knowledge
distillation loss Lkd. We denote k trajectory anchors used in
πtraj as {Ti}ki=1. The imitation loss is calculated as a cross
entropy based on the expert trajectory T̂ and the predicted
imitation scores for each trajectory anchor {Sim

i }ki=1:

yi =
e−(T̂−Ti)

2∑k
j=1 e−(T̂−Tj)

2

Lim = −
∑k

i=1 yi log(Sim
i ).

(1)

yi measures the similarity between the expert trajectory T̂
and each trajectory anchor Ti. The knowledge distillation
loss aims to learn open-loop objectives via binary cross-
entropy between predicted metric scores {Sm

i }ki=1 and the
ground-truth metric scores {Ŝm

i }ki=1:

Lkd = −
∑

m,i Ŝm
i logSm

i + (1− Ŝm
i ) log(1− Sm

i )

where m ∈ {COL, SLK,EP}.
(2)

COL, SLK,EP correspond to the Collision, Soft Lane
Keeping, and Ego Progress metrics defined in Sec. 3. The
ground-truth metric scores are binary values, derived from
the privileged information and each trajectory anchor. The
overall loss of πtraj is formulated as:

Ltraj = Lim + Lkd. (3)

1.2. πctrl: Control Decoder
The loss of πctrl computes a classification-based loss for
each control signal (i.e. brake, throttle, and steer) across
tctrl timesteps. For simplicity, a control signal tuple C =
(brake, throttle, steer) is abbreviated as (b, th, s), while
the expert demonstration is denoted as (b̂, t̂h, ŝ). Specifically,
these loss functions are formulated as:

Lbrake =
∑tctrl

t=1 Focal(bt, b̂t)

Lthrottle =
∑tctrl

t=1 CE(tht, ˆtht)

Lsteer =
∑tctrl

t=1 CE(st, ŝt)

Lctrl = Lbrake + Lthrottle + Lsteer,

(4)

where Focal stands for the focal loss [15] and CE is the
cross entropy loss. We empirically find that applying a focal
loss to throttle and steer predictions leads to a performance
degradation, possibly due to their more balanced distribution
in the dataset.

1.3. πdp: Diffusion Policy
πdp is based on the standard Diffusion Policy [3] trained on
continuous data. Given expert control signals (Ĉ1, ..., ˆCtdp)
across tdp frames, πdp is trained to predict the noise εj added
to the expert control signals, where j is the denoising itera-
tion. MSE loss is applied for noise prediction:

Ldp = MSE(εj , πdp((Ĉ1, ..., ˆCtdp) + εj , j)). (5)

Finally, the overall loss of Hydra-NeXt becomes

L = Ltraj + Lctrl + Ldp. (6)

2. Performance of Individual Policies
We conduct experiments on how each individual policy per-
forms on the Bench2Drive Benchmark. As shown in Tab. 2,
using πctrl alone leads to serious performance degradation
compared with the full version of Hydra-NeXt (-16.56 DS
and -29.33 SR). Moreover, πdp achieves better results when
its control candidate follows the predicted trajectory from
πtraj rather than being randomly selected (+5.36 DS and
+4.28 SR), highlighting the importance of trajectory guid-
ance. Finally, the full version of Hydra-NeXt achieves sub-
stantial improvements (+13.09 DS and +17.47 SR) compared
with the baseline Hydra-MDP (πtraj).

πtraj πctrl πdp Driving Score ↑ Success Rate ↑

✓ 52.80 30.73
✓ 49.33 18.87

Rand. 51.18 27.98
Traj. 56.54 32.26

✓ ✓ ✓ 65.89 48.20

Table 2. Performance of Individual Policies on Bench2Drive.

3. Efficient Diffusion Policy πdp

We found that the efficiency of πdp can be greatly enhanced
without sacrificing too much performance. By replacing the
DDPM with a DDIM scheduler [17], we can reduce the
latency by approximately 53%, decreasing the number of
denoising steps from 100 to 20. Additionally, by combining
this modification with flash attention, we achieve latencies



Method Perception Network Grid Search NC ↑ DAC ↑ TTC ↑ EP ↑ C ↑ PDMS ↑

Transfuser [4] Transfuser [4] - 97.7 92.8 92.8 79.2 100 84.0
DRAMA [18] Transfuser [4]* - 98.0 93.1 94.8 80.1 100 85.5
Hydra-MDP [13] Transfuser [4] ✗ 97.9 91.7 92.9 77.6 100 83.0
Hydra-MDP [13] Transfuser [4] ✓ 98.3 96.0 94.6 78.7 100 86.5
DiffusionDrive [14] Transfuser [4] - 98.2 96.2 94.7 82.2 100 88.1

Hydra-NeXt Transfuser [4] ✗ 98.4 95.9 94.8 80.6 100 87.2
Hydra-NeXt Transfuser [4] ✓ 98.1 97.7 94.6 81.8 100 88.6

Table 1. Performance of E2E-AD Methods on NAVSIM. All methods above use Transfuser [4] with ResNet34 [9] as the perception
backbone. *DRAMA [18] uses Mamba [5] for multi-modal interaction. Hydra-MDP [13] uses grid search to obtain the optimal hyper-
parameters for weighting different predicted metric scores.

Method Latency (ms) ↓ D.S. ↑ S.R. ↑

VAD 224.3 39.42 10.00
Hydra-NeXt (w/o πdp) 250.6 60.40 48.10
Hydra-NeXt* (DDPM) 528.3 65.89 48.20
Hydra-NeXt* (DDIM) 243.9 64.87 46.63

Table 3. Efficiency of Different Diffusion Schedulers. * denotes
Flash-attention [6].

comparable to VAD while maintaining strong closed-loop
performance, with only a marginal 1% drop in the Driving
Score. Therefore, we conclude that πdp can be both effective
and efficient with the right design choices.

4. Implementation on NAVSIM

Our implementation of Hydra-NeXt on NAVSIM uses a
different perception network Transfuser [4] following Hydra-
MDP [13]. Transfuser [4] features two backbones for camera
and lidar feature extraction, a BEV segmentation head, a
3D object detection head, and transformer layers for multi-
modal feature interaction. This setting helps to make a fair
comparison to baselines such as Hydra-MDP and Diffusion-
Drive [14]. For πctrl and πdp, we incorporate the same trans-
former architectures used on Bench2Drive for acceleration
and steering rate predictions since NAVSIM [7] does not
utilize control signals like CARLA [1, 8] and only evaluates
the trajectory. Therefore, these auxiliary predictions only act
as extra learning targets. As a result, Hydra-NeXt surpasses
the state-of-the-art planner DiffusionDrive by 0.5 PDMS
(see Tab. 1) when adopting the grid search trick [13] among
different metric scores in πtraj .

5. Implementation on CARLA-Garage

We provide additional results on the CARLA-Garage
dataset [10] collected by the PDM-Lite expert [2]. Com-
pared to the Bench2Drive dataset [11], this dataset features
smooth driving with no jittery behavior. We experiment with

Method Expert D.S. ↑ S.R. ↑

Hydra-NeXt Think2Drive 73.86 50.00
TF++† [10] PDM-Lite 84.21 67.27

SimLingo [16] PDM-Lite 85.94 66.82
Hydra-NeXt*† PDM-Lite 86.00 68.18

Table 4. Performance of Models Trained with Different Experts.
†Ensemble of three models trained with different seeds.

πtraj and πdp within the TF++ framework [10]. Specifi-
cally, we replace the longitudinal control head of TF++ with
πtraj (imitation + collision head) and fuse the outputs of
πdp with longitudinal and lateral controls. We then ensem-
ble three models trained with different seeds. This variant,
Hydra-NeXt*, achieves a Driving Score of 86%, surpassing
existing methods.

6. Visualization Results
Fig. 1 shows more visualization results in interactive sce-
narios (Merging, Overtaking, and Give Way). The Diffusion
Policy πdp can capture multiple planning modes such as fol-
lowing other agents or overtaking them (see the second row
and the fourth row of the figure).

7. Limitations.
Although Hydra-NeXt shows outstanding closed-loop driv-
ing performance compared with E2E methods, it still falls
behind RL-based experts using privileged input. The runtime
efficiency of the Diffusion Policy also deserves optimization.
We expect these to be addressed in future research.



Proposals from 𝜋𝑑𝑝

Trajectory from 𝜋𝑡𝑟𝑎𝑗
Nearest Proposal

Figure 1. More Visualizations of Trajectory Refinement. The figure shows the front-view image, trajectories transformed from control
proposals, and the selected nearest proposal to the predicted trajectory.
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