HYPDAE: Hyperbolic Diffusion Autoencoders for
Hierarchical Few-shot Image Generation

Supplementary Material

Overview

This appendix is organized as follows:

Sec. A gives more implementation details of HypDAE.
Sec 3.2 & Sec 4.1

Sec. B gives detail explanation of diffusion models.

Sec. C provides the mathematical formulae used in hyper-
bolic neural networks. Sec 3.2 & Sec 3.3

Sec. D shows more results of the ablation study of Hyp-
DAE. Sec 4.3

Sec. E shows more comparisons between the latent ma-
nipulation in hyperbolic and Euclidean space. Sec 4.3

Sec. F provides examples to show the exceptional out-of-
distribution few-shot image generation ability. Sec 4.4

Sec. G shows the images generated with different radii in
the Poincaré disk. Sec 4.3

Sec. H compares the images generated by state-of-the-
art few-shot image generation method, i.e. WaveGAN [17],
HAE [8] and our methods HypDAE. Sec 4.4

Sec. I gives more details of the user study we conducted.
Sec 4.4

Sec. J gives more examples generated by HypDAE. Sec
44

A. Implementation Details and Analysis

Stage I. As mentioned in Sec 3.2, this stage does not require
class labels for the images. To promote diversity, we use only
the CLIP image encoder’s class token (dimension 1 x 1024)
for a compact representation, aligning it with the CLIP text
feature space via a 5-layer fully connected MLP following
the same settings in [16] that inject features into the diffusion
process through cross-attention to replace the text feature in
the original stable diffusion model.

We choose Stable Diffusion V2.1 [13] as the base gen-
erator for the base generative model. We set the image
resolution to 512 x 512. We choose the Adam optimizer and
set the learning rate as le—5. During the training process,
the pre-trained CLIP image encoder and SD V2.1 models

are frozen, only the Transformer block for aligning features
is trainable. Since the SD model is loaded during the train-
ing process, we use 2 X NVIDIA A800 (80GB) GPUs for
training, and the batch size is selected as 24 for each GPU.
We train about 1eb steps to get the model to converge on
each dataset.

Stage II. This stage is the only stage that requires the class
labels for given images to learn the hierarchical represen-
tation. Although class labels are required in Stage II, the
model only needs a small number of labeled data for pre-
training and pseudo labels can be predicted by CLIP as
shown in Sec. A. Furthermore, we show exceptional out-of-
distribution generation ability in Sec. F. For the hyperbolic
encoder mentioned in Sec 3.2, we use a single-head 5-layer
Transformer block to reduce the dimensionality of the Eu-
clidean latent vector ¢ from 1 x 1024 to 1 x 512, which is
then mapped to hyperbolic space via an exponential map. A
hyperbolic feed-forward layer [2] produces the final hierar-
chical representation zp:

en = 9 (expg (E(e))), (D

where E is the Transformer encoder and f®< is the Mobius
translation of feed-forward layer f as the map from Eu-
clidean space to hyperbolic space, denoted as Mobius linear
layer. In order to perform multi-class classification on the
Poincaré disk defined in Sec 3.1, one needs to generalize
multinomial logistic regression (MLR) to the Poincaré disk
defined in [2]. An extra linear layer needs to be trained for
the classification, and the details on how to compute soft-
max probability in hyperbolic space are shown in Sec. C.
As mentioned in Sec 3.1, the distance between points grows
exponentially with their radius in the Poincaré disk. In order
to minimize Eq. (5) in the main paper, the latent codes of
fine-grained images will be pushed to the edge of the ball to
maximize the distances between different categories while
the embedding of abstract images (images have common fea-
tures from many categories) will be located near the center
of the ball. Since hyperbolic space is continuous and dif-
ferentiable, we are able to optimize Eq. (5) with stochastic
gradient descent, which learns the hierarchy of the images.
Then we train a Transformer decoder to project the hyper-
bolic latent code back to the CLIP image space with exact



reconstruction. In practice, this is achieved by firstly apply-
ing a logarithmic map followed by a Transformer decoder
D:

¢’ = D(logg(cn))- 2)

and ¢’ will be fed into the cross-attention layer of the sta-
ble diffusion model to reconstruct the image =’. We use a
single-head 30-layer Transformer block as the Transformer
decoder for Animal Faces [9], VGGFaces [11], FFHQ [5],
and NABirds [15] since these datasets are relatively large.
Therefore, a deeper network is needed to reconstruct the la-
tent representation of these large datasets. However, for the
Flowers dataset [10], the number of images is less than 10
thousand, which is not enough to train a deep neural network.
As a consequence, we use a single-head 5-layer Transformer
block as the Transformer decoder for Flowers which works
well.

Fine-tuning on FFHQ. As we mentioned in Sec 4.2 in
the main paper, we learn the hierarchy of human faces by
training Stage II with VGGFaces first. However, we visual-
ize the human faces with the FFHQ dataset. Note that the
FFHQ dataset has no class labels. Therefore, we first use
the VGGFaces dataset to learn a good prior of hierarchy
among human faces images with supervision, then fine-tune
the model with the reconstruction loss L. only to teach the
model how to reconstruct images with high resolution but
maintaining the hierarchical representation prior. The results
show the great potential of our model to be fine-tuned on
large-scale dataset without supervision.

In Stage II, only the CLIP image encoder is loaded during
the training process. Besides, the CLIP image encoder is
frozen, and only the lightweight Transformer encoder and
decoder are trainable. We use 1 x NVIDIA RTX 4090
(24GB) GPU for training, and the batch size is selected as
256. The A in Eq. (7) in the main paper is selected as 0.1.
We choose the AdamW [7] optimizer and set the learning
rate as le—3. A linear learning rate scheduler is used with a
step size equal to 5000, with a multiplier v = 0.5. We train
about 1e5 steps to get the model to converge on each dataset.

In addition, as a remark, we choose the largest radius as
6 in most of our experiments as in hyperbolic space since
any vector asymptotically lying on the surface unit N-sphere
will have a hyperbolic length of approximately r = 6.2126,
which can be directly calculated by Eq. (2).

Although training our model requires considerable com-
puting resources as mentioned before, the runtime cost and
resources required for the inference stage are affordable. Our
model can inference on a single NVIDIA RTX 4090 GPU
(24GB) thanks to our multi-stage training/inference since
one does not need to load all models simultaneously.
Pseudo-Labeling. For Flowers, Animal Faces and
NABirds, we utilize the CLIP ViT-B/32 model. Given an
image (z), we extract its embedding using the CLIP image
encoder. Similarly, we compute embeddings for a predefined

set of class names (y;) using the CLIP text encoder. The
cosine similarity between the image embedding and each
class embedding is computed as:
: f(x) - 9(yi)
sim(z, yi) = s 3)
|f(@)llg(y:)]
where (f(-)) and (g(-)) denote the CLIP image and text
encoders, respectively. The softmax function is applied to
convert similarity scores into probabilities. The pseudo-label
(y) is assigned as the class with the highest probability:

y = argmex exp(sim(x, y;))

. 4
X S exp(im(z, y;)) @

For the VGGFaces dataset, we employ the DeepFace frame-
work with the VGG-Face architecture. DeepFace predicts
pseudo-labels by comparing the face embedding of an image
with embeddings of known identities in the dataset. Specif-
ically, we construct a reference database by selecting one
image per class, and each input image is assigned to the
class with the highest similarity score. This approach en-
sures robust pseudo-labeling by leveraging DeepFace’s face
recognition capabilities.

Dataset Settings We evaluate our method on Animal
Faces [9], Flowers [10], VGGFaces [11], FFHQ [5], and
NABirds [15] following the settings described in [1, 8].
Animal Faces. We randomly select 119 categories as seen
for training and leave 30 as unseen categories for evaluation.
Flowers. The Flowers [10] dataset is split into 85 seen cate-
gories for training and 17 unseen categories for evaluation.
VGGFaces. For VGGFaces [11], we randomly select 1802
categories for training and 572 for evaluation.

NABirds. For NABirds [15], 444 categories are selected for
training and 111 for evaluation.

FFHQ. Due to the low resolution (64 x 64) of the VGGfFces
dataset, we use FFHQ [5] to fine-tune the model pre-trained
on VGGFaces without supervision and visualize images of
human faces with FFHQ.

B. Additional Background - Diffusion Models

Diffusion Denoising Probabilistic Models (DDPM) [4] are
generative latent variable models that aim to model a distri-
bution pg (o) that approximates the data distribution ¢(z)
and easy to sample from. DDPMs model a “forward process”
in the space of zy from data to noise. This is called “forward”
due to its procedure progressing from z to 7. Note that
this process is a Markov chain starting from xy, where we
gradually add noise to the data to generate the latent vari-
ables x1,...,x7 € X. The sequence of latent variables,
therefore, follows q(x1, ...,z | z0) = [[i—; q(z¢ | T1-1),
where a step in the forward process is defined as a Gaussian
transition q(x¢ | x4—1) := N(x¢; /1 — Brxy—1, fi]) param-
eterized by a schedule fy, ..., 81 € (0,1). When T is large



enough, the last noise vector 7 nearly follows an isotropic
Gaussian distribution.

An interesting property of the forward process is that one
can express the latent variable z; directly as the following
linear combination of noise and x(y without sampling inter-
mediate latent vectors:

Tt = Jogrg + V1 — apw, w~ N(0,I), 5)

where «; := Hle(l = Bi)-

To sample from the distribution ¢(z(), we define the
dual “reverse process” p(x¢—1 | x;) from isotropic Gaussian
noise z7 to data by sampling the posteriors q(x:—1 | x¢).
Since the intractable reverse process g(z:—1 | ) depends
on the unknown data distribution ¢(x), we approximate it
with a parameterized Gaussian transition network pg(x;—_1 |
xy) := N(xp—1 | po(xe,t), Xo(xt,t)). The pg(zy,t) can be
replaced [4] by predicting the noise €p(x¢,t) added to zg
using equation 5.

C. Hyperbolic Neural Networks

For hyperbolic spaces, since the metric is different from
Euclidean space, the corresponding calculation operators
also differ from Euclidean space. In this section, we start by
defining two basic operations: Mobius addition and M&bius
scalar multiplication [6], given fixed curvature c.

For any given vectors x,y € H", the Mobius addition is
defined by:

(1 —2c(z,y) —cllyll3) = + (1 +cllzl3) y

; (6)
1 —2c(z,y) + 2||=[I3]lyll3

TDey =

where || - || denotes the 2-norm of the vector, and (-, -) denotes
the Euclidean inner product of the vectors.

Similarly, the Mobius scalar multiplication of a scalar r
and a given vector x € H" is defined by:

(N

r @z = tan, (rtan; " (|z]]2)) ——.
]l
We also would like to give explicit forms of the expo-
nential map and the logarithmic map which are used in our
model to achieve the translation between hyperbolic space
and Euclidean space as mentioned in Sec 3.2.
The exponential map exp, : T,D7 = R" — D7, that
maps from the tangent spaces into the manifold, is given by

expl(v) == x B, (tanh (\/E/\;!v> ﬁ1|}|v|) . (8

The logarithmic map log.(y) : D7 — T, D" = R"™ is
given by

2 —x DY
log® (y) := ——— arctanh (v/ |-z @q y||) ——2Y_.
og: (y) e arctanh (Ve |-z @, yl|) 1=z @0 ]|

)
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Figure 1. The illustration of hierarchical data sampling in
hyperbolic space

We also provide the formula to calculate the softmax
probability in hyperbolic space used in Eq. (5) in the main
paper: Given K classesand k € {1,..., K}, p, € D7, a; €

T, Dz \{0}

Ao Nl

ply=k|x)x exp(\/E sinh™*

(2flneer ))
(1= cll-px e 2l lax

Vo € D7,

(10)
where @, denotes the Mobius addition defined in Eq. (6)
with fixed sectional curvature of the space, denoted by c.
Hierarchical Data Sampling. As illustrated in Fig. 1, as
the latent code z,. of the reference image x,.y moves from
the edge to the center of the Poincaré disk, the control of the
identity of the sampled images becomes weaker and weaker.
The identity of the generated images becomes more ambigu-
ous. To conduct hierarchical image sampling in hyperbolic
space, one can move the latent code z..y of the reference
image x,.y towards the origin of the Poincaré disk. Then,
sampling latent points among the “children” of the rescaled
reference images. In practice, the semantic diversity of the
generated images can be controlled either by setting different
values of rp, then calculating r¢ based on rp, or by setting
different values of r¢ directly.

Recall that, in hyperbolic space, the shortest path with
the induced distance between two points is given by the
geodesic defined in Eq. (2) in the main paper. The geodesic
equation between two embeddings zp; and zp;, denoted by
72m1—>zmj (t)’ is given by

Vepi—zn, (1) = 2Di Be t Qe ((—2pi) De 2py) , t € [0,1],
(11)



where @, denotes the Mobius addition with aforementioned
sectional curvature c. Therefore, for hierarchical data sam-
pling, we can first define the value of r¢, then sample random
data points in hyperbolic space. If the distance between the
sampled data point and 2, is equal to or shorter than the
value, we accept the data point. Otherwise, we move the
latent codes along the geodesic between the sampled data
point and 2, until the distance is within the scope we de-
fine. We show more hierarchical image sampling examples
in Sec. F.

D. Ablation Study

There are a few hyperparameters of HypDAE that control
the generation quality and diversity. We conduct ablation
studies on each of them in this section.

Hyperbolic Radius. By varying the radii of “parent” im-
ages, HypDAE controls the semantic diversity of gener-
ated images (Fig. 11), where the “parent” images can be
viewed as the image with the average attributes of its chil-
dren. The quantitative results of the Flowers dataset are pre-
sented in Tab. 1. We can see that the diversity increases as
the radius becomes smaller, therefore, the value of LPIPS in-
creases accordingly. However, changing too many attributes
changes the identity or category of the given images, there-
fore, the FID decreases when the radius is smaller than 5.5.
In practice, we select 5.5 as the radius of the parent images
for few-shot image generation.

Classifier-free Guidance. To achieve the trade-off between
identity preservation and image harmonization, we find that
classifier-free sampling strategy [3] is a powerful tool. Pre-
vious work [14] found that the classifier-free guidance is
actually the combination of both prior and posterior con-
straints. In our experiments, we follow the settings in [18].

€prd = €uc T § (ec - €uc) 5 (12)

where €,,4, €uc, €c, § are the model’s final output, un-
conditional output, conditional output, and a user-specified
weight, respectively. The visualizations are shown in Fig. 3,
and quantitative results for the Flowers dataset are presented
in Tab. 2. Consistent with findings in Tab. 1, diversity, mea-
sured by LPIPS, increases as the cfg scale grows. However,
excessive cfg scaling can alter the identity or category of the
input images, leading to a decline in FID when the cfg scale
exceeds 1.3. Based on these results, we select a cfg scale
of 1.3 to achieve optimal few-shot image generation with a
balance between fidelity and diversity.
Encoding Strength of the Stochastic Encoder. As de-
scribed in Sec. 3.2, the encoding strength of the stochastic
encoder determines the extent of information encoded from
the given images. For instance, attributes such as rough
posture, color, and style are encoded during the early steps
of the diffusion process. A higher encoding strength de-

Hyp Radius | 6.2 6.0 55 5.0 45
FID(]) ‘27.89 2467 2396 2489  26.63

LPIPS(T) | 0.7585 0.7589 0.7595 0.7643 0.7725

Table 1. Ablation study of different radii on Flowers.

CFG ‘ 1.0 1.1 1.3 1.5 1.7

FID(]) 2552 2489 2396 26.04  25.63
LPIPS(1) | 0.7391 0.7534 0.7595 0.7660 0.7737

Table 2. Ablation study of the influence of CFG on Flowers.

Strength ‘ 1.0 0.98 0.95 0.9 0.8

FID(]) 2897 2459 2396 2494 2648
LPIPS(1) | 0.7631 0.7606 0.7595 0.7585 0.7375

Table 3. Ablation study of the influence of encoding strength on
Flowers.

constructs more information from the input images, while
a lower encoding strength retains more original informa-
tion. An encoding strength of 1 implies full deconstruction,
where the initial latent of the denoising process is Gaussian
noise. Conversely, an encoding strength of 0 results in exact
reconstruction without information loss.

While lower encoding strength preserves the identity and
style of the input images, it reduces diversity. This trade-
off is visualized in Fig. 4, and quantitative results for the
Flowers dataset are presented in Tab. 3. Consistent with
Tab. 1, diversity, measured by LPIPS, increases with higher
encoding strength, while excessive encoding strength can
cause changes in identity or category. This is reflected in a
decrease in FID when encoding strength exceeds 0.95 (i.e.,
5% of the information is encoded). Based on these findings,
we set the encoding strength of the stochastic encoder to
0.95 to achieve reliable few-shot image generation.
Hyperparameter Ablation. To validate the robustness of
the trade-off parameter in Eq. (7), we rewrite Eq. (7) as:
L = X Luyper + Lrec, ablate the loss to analyze this trade-off.
As shown in Fig. 2, increasing A\ improves semantic consis-
tency (lower FID) while reducing diversity (lower LPIPS),
validating the controllability introduced by the hyperbolic
component.

E. Comparison with Euclidean space

In this section, we present a detailed comparison of different
latent spaces, as shown in Fig. 5. Compared to classical Eu-
clidean space, hyperbolic space enables smoother transitions
between two given images. In hyperbolic space, identity-
irrelevant features transition first, followed by a gradual
change in identity-relevant features. In contrast, Euclidean
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Figure 2. Ablation Study of trade-off adaptive hyperparameter A
in the loss function.

space exhibits simultaneous changes in both identity-relevant
and identity-irrelevant features, leading to less structured
transitions.

These results confirm that our method effectively
learns hierarchical representations in hyperbolic space, en-
abling few-shot image generation by selectively modify-
ing category-irrelevant features—a capability that Euclidean
space cannot achieve. Additional interpolation results, pro-
vided in Fig. 6, demonstrate that smooth and distortion-free
transitions are achievable in hyperbolic space. These find-
ings highlight that HypDAE enables precise geodesic and
hierarchical control during editing, offering a significant
advantage over traditional approaches.

F. Out-of-distribution Few-shot Image Genera-
tion

In Sec 4.2 of the main paper, we mentioned we fine-tuned
the model trained with VGGFaces using the FFHQ dataset.
The model shows exceptional out-of-distribution general-
ization ability on the FFHQ dataset. To further verify the
OOD generalization ability of HypDAE, we select two im-
ages for Animal Faces [9], Flowers [10], and NABirds [15]
datasets with three styles from DomainNet [12] including
“ painting”, “sketch”, “quick draw”, and “clipart” styles
where are model never seen during the training stage. The
OOD style transfer can be done by slightly increasing the
encoding strength of the stochastic encoder to capture more
style information of the given new images. The results
in Fig. 7 Fig. 8 Fig. 9 Fig. 10 show that our proposed method
has exceptional OOD generalization ability even for new
domains with a big gap from the original domain. Although
our model still generates images with some real detail for the
style “clipart”, the performance in other styles is satisfying.
Such an OOD generalization ability is significantly better
than any of the previous works.

G. Hierarchical Image Generation

In this section, we provide additional examples of images
generated by HypDAE at varying radii in the Poincaré disk.

As illustrated in Fig. 11, Fig. 12, and Fig. 13, high-level,
category-relevant attributes remain unchanged when the ra-
dius is large, allowing for the generation of diverse images
within the same category. Conversely, as the hyperbolic
radius rp decreases, the generated images become more ab-
stract and semantically diverse. Moving closer to the center
of the Poincaré disk results in the gradual loss of fine-grained
details and changes to higher-level attributes.

For the few-shot image generation task, larger radii are op-
timal as they allow for the modification of category-irrelevant
attributes while preserving the category identity. However,
HypDAE is not limited to few-shot image generation and
shows significant potential for other downstream applica-
tions. For example, HypDAE can generate a diverse set
of feline images from a single cat image. This is achieved
by scaling the latent code to a smaller radius in hyperbolic
space and introducing random perturbations to approximate
the average latent code for various feline categories. Finally,
fine-grained and diverse feline images are generated by mov-
ing these average codes outward to larger radii, representing
their "children" in the hierarchical space.

H. Comparison with State-of-the-art Few-shot
Image Generation Method

We compare images generated by state-of-the-art meth-
ods, including WaveGAN [17], HAE [8], and our proposed
method, across four datasets. As shown in Fig. 14, Wave-
GAN produces high-fidelity images, but the diversity is lim-
ited (i.e., blending features from two input images with-
out significant variation). HAE improves diversity but suf-
fers from low fidelity and quality, with missing details and
changes in category or identity compared to the original im-
ages. In contrast, HypDAE achieves an excellent balance
between maintaining identity and enhancing diversity while
delivering significantly higher image quality than other meth-
ods. These results highlight the potential of HypDAE for
broader applications in future downstream tasks.

I. User Study

As mentioned, we conducted an extensive user study with
a fully randomized survey. Results are shown in the main
text. Specifically, we compared HypDAE with three other
models WaveGAN [17], HAE [8], and SAGE [1]:

1. We randomly chose 5 images from four datasets, and for
each image, we then generated 3 variants in 1-shot setting
(WaveGAN used 2-shot setting), respectively. Overall,
there were 20 original images and 60 generated variants
in total.

2. For each sample of each model, we present one masked
background image, a reference object, and the generated
image to annotators. We then shuffled the orders for all
images.



Figure 3. Ablation study on the influence of classifier free guidance.

3. We recruited 30 volunteers from diverse backgrounds and
provided detailed guidelines and templates for evaluation.
Annotators rated the images on a scale of 1 to 4 across
three criteria: “Fidelity”, “Quality”, and “Diversity”. “Fi-
delity” evaluates identity preservation, while “Quality”
assesses quality of the images (e.g., details of the im-
age). “Diversity” measures variation among generated
proposals to discourage “copy-paste” style outputs.

The user-study interface is shown in Fig. 17.

J. Additional Examples Generated by HypDAE

Finally, we provide more examples generated by HypDAE
in Fig. 15 and Fig. 16 for four datasets. The results show that
our method achieves a balance between the quality and diver-
sity of the generated images which significantly outperforms

previous methods.

cfg=1.0

cfg=1.1
cfg=1.3
cfg=1.5
cfg =20
cfg =40
cfg=6.0
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Figure 4. Ablation study on the influence of the encoding strength of the stochastic encoder on FFHQ (strength equals 1 means x is fully
deconstructed, i.e., z7 is a Gaussian noise).
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Figure 5. Comparison of interpolation in hyperbolic space and Euclidean space on Animal Faces dataset.
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Figure 6. More results of interpolation in hyperbolic space on FFHQ, NABirds, and Flowers datasets.



Figure 7. Few-shot image generation on out-of-distribution examples in painting style.



Figure 8. Few-shot image generation on out-of-distribution examples in sketch style.
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Figure 10. Few-shot image generation on out-of-distribution examples in clipart style.
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Figure 11. Images with hierarchical semantic similarity generated by HypDAE.
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Figure 12. Images with hierarchical semantic similarity generated by HypDAE.
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Figure 13. Images with hierarchical semantic similarity generated by HypDAE.



Input

Figure 14. More comparison between images generated by WaveGAN, HAE, and HypDAE on Flowers, Animal Faces, VGGFaces, and
NABirds. Note: WaveGAN uses a 2-shot setting; HAE and HypDAE are both in a 1-shot setting. Zoom in to see the details.



Figure 15. More examples generated by HypDAE on Animal Faces and Flowers.



Figure 16. More examples generated by HypDAE on NABirds and VGGFaces.




INPUT

You are given a reference image to generate diverse new images
that belong to the same category/identity as the reference image.

Your task is to rate the generated image from 1 (worst) to 4 (best)
concerning

1) Fidelity: If the generated image preserves its original input
category/identity

2) Quality: If the quality of the generated images is good (with details and
looks like real images)

3) Diversity: If the generated images have novel views or poses

Problem 1: Input the score for Fidelity
Problem 2: Input the score for Quality
Problem 3: Input the score for Diversity

Figure 17. The illustration of the user study interface.
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