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The supplementary material is organized as follows:
Section A provides additional implementation details for
stable diffusion and a comprehensive overview of the MESS
benchmark. Section B extends the comparison with more
diffusion-based methods. Section C presents the complete
results across all 22 datasets in MESS. Section D explores
the quantitative impact of incorporating different vision-
language foundation models into our framework. In Sec-
tion E, we provide further analysis of ablation experiments.
Section F shows more visualization results of the proposed
method.

A. Implementation Details
A.1. The Details of Stable Diffusion
The pre-trained weight of the stable diffusion model
is available at https : / / huggingface . co /
stabilityai/stable-diffusion-2.

A.2. More Details of MESS Benchmark
As shown in Table 7, we provide detailed information about
the MESS benchmark, which includes 22 datasets compris-
ing 448 classes and 25,079 images. The benchmark spans
four distinct data types: visible spectrum, multispectral,
microscopic, and electromagnetic. This diversity reflects
a broad range of real-world applications, enabling a thor-
ough evaluation of model performance across both general-
purpose tasks and specialized domain-specific scenarios.

B. Extended Comparison with Diffusion-based
Methods

In the main paper, we compare our method with the pre-
vious SOTA approach, ODISE. In Table 1, we extend
our comparison to include additional diffusion-based open-
vocabulary semantic segmentation approaches, providing a
more comprehensive evaluation. Notably, even with these
expanded comparisons, our method continues to outper-

*Corresponding author.

Model PC-459 A-150 PC-59 PAS-20 PAS-20b

Dataset Diffusion [22] - - - - 60.2
OVDiff [14] - 14.1 32.9 80.9 69.0
OVAM [20] - - - - 82.5
ProxyCLIP [15] - 22.6 37.7 83.2 60.6
FreeDA [1] - 23.2 43.5 87.9 -
DEDOS (Ours) 25.6 39.4 65.7 97.6 84.6

Table 1. Quantitative comparison with previous diffusion-based
open-vocabulary semantic segmentation approaches.

VLM PC-459 A-150 PC-59 PAS-20 PAS-20b

EVA-02-B [9] 22.1 33.5 60.4 95.1 81.3
EVA-02-L [9] 26.5 40.1 64.9 97.0 85.4
CLIP-ViT-L 25.6 39.4 65.7 97.6 84.6

Table 2. Comparison of performance using different VLMs as
backbones with the proposed method.

form all previous works by a significant margin, further val-
idating its effectiveness.

C. Full Quantitative Results on MESS

To comprehensively validate the effectiveness of our
method, we present the complete test results on the MESS
dataset, as shown in Table 3. It can be observed that our
method achieves optimal results on most of the datasets,
highlighting its adaptability and robustness. Notably, it
excels in general domains as well as in agriculture and
biology, significantly outperforming all previous state-of-
the-art methods. However, in a few specific cases, such
as CHASE DB1 and PST900—which consist of micro-
scopic and electromagnetic images, respectively—the per-
formance does not reach optimal levels. We attribute this to
the diffusion model’s limited prior knowledge of these spe-
cialized spectral domains, which poses challenges in cap-
turing the unique characteristics of such images. Despite
these isolated cases, the overall results strongly underscore
the versatility and effectiveness of our method, showcasing
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Random (LB) 1.5 1.3 1.3 0.2 0.6 2.2 0.6 8.0 18.4 3.4 5.2 28.0 27.3 31.3 31.5 9.3 26.5 4.5 6.5 5.3 0.1 13.1
Best sup. (UB) 44.8 63.9 50.0 45.1 42.2 45.7 65.3 87.6 92.7 82.2 67.8 93.7 97.1 73.5 93.8 49.9 85.9 82.3 52.5 74.0 84.6 87.2

ZSSeg-B 32.4 16.9 7.1 8.2 22.2 33.2 3.8 11.6 23.3 21.0 30.3 46.9 37.0 38.7 44.7 3.1 25.4 18.8 8.8 30.2 4.4 32.5
ZegFormer-B 14.1 4.5 4.3 10.0 19.0 29.5 2.7 14.0 25.9 22.7 20.8 27.4 12.5 11.9 18.1 4.8 29.8 19.6 17.5 28.3 16.8 32.3
X-Decoder-T 47.3 24.2 3.5 2.6 27.5 27.0 2.4 31.5 26.2 8.8 25.7 55.8 10.2 11.9 15.2 1.7 24.7 19.4 15.4 24.8 0.5 29.3
SAN-B 37.4 24.4 8.9 19.3 36.5 49.7 4.8 37.6 31.8 37.4 41.7 69.9 17.9 12.0 19.7 3.1 50.3 19.7 21.3 22.6 16.9 5.7
OpenSeeD-T 48.0 28.1 2.1 9.0 18.6 29.2 1.5 31.1 30.1 23.1 39.8 59.7 46.7 33.8 37.6 13.4 47.8 2.5 2.3 19.5 0.1 11.5
Gr.-SAM-B 41.6 20.9 29.4 10.5 17.3 57.4 12.2 26.7 33.4 19.2 38.3 46.8 23.6 38.1 41.1 20.9 59.0 21.4 16.7 14.1 0.4 38.4
CAT-Seg-B 46.7 28.9 23.7 26.7 40.3 65.8 19.3 45.4 35.7 37.6 41.6 48.2 17.0 15.7 31.5 12.3 31.7 19.9 17.5 44.7 10.2 42.8
DEDOS-B 48.1 33.4 29.0 30.5 44.7 69.6 20.4 47.3 40.2 40.6 41.9 64.0 24.9 31.7 44.5 13.2 29.4 21.4 26.5 49.0 17.5 37.7

OVSeg-L 45.3 22.5 6.2 16.4 33.4 53.3 8.3 31.0 31.5 35.6 38.8 71.1 21.0 13.5 22.1 6.8 16.2 21.9 11.7 38.2 14.0 33.8
SAN-L 43.8 30.4 9.3 24.5 40.7 68.4 11.8 51.5 48.2 39.3 43.4 72.2 7.6 11.9 29.3 6.8 23.7 19.0 18.3 40.0 19.3 1.9
Gr.-SAM-L 42.7 21.9 28.1 10.8 17.6 60.8 12.4 27.8 33.4 19.3 39.4 47.3 25.2 38.1 44.2 20.9 58.2 21.2 16.7 14.3 0.4 38.5
CAT-Seg-L 47.9 35.0 32.5 33.3 45.6 73.8 20.6 50.8 46.4 41.4 40.8 61.1 3.7 11.9 22.0 11.0 19.9 22.0 27.9 53.0 22.9 39.9
DEDOS-L 49.8 38.3 34.9 34.1 48.6 75.6 21.5 53.1 48.3 43.7 42.3 64.7 21.3 29.5 46.9 14.5 30.2 20.7 28.6 56.1 24.6 42.8

Table 3. mIoU results for all datasets on MESS [4]. MESS covers 5 specific domains with a total of 22 datasets. Random and supervised
are provided for reference. The best results are highlighted in bold.

Method PC-459 A-150 PC-59 PAS-20 PAS-20b

w/o average and max queries 25.1 39.0 65.2 97.5 84.2
with average and max queries 25.6 39.4 65.7 97.6 84.6

Table 4. Ablation study on average and max queries.

γ 0.8 1 1.5 1.8 2

mIoU 65.1 65.3 65.7 65.6 65.2

Table 5. Ablation study on the loss weights γ of Lconsist on the
PC-59 dataset.

Function MSE Smooth L1
Cross

entropy
KL

divergence

mIoU 64.9 65.7 65.1 64.6

Table 6. Quantitative comparison of different loss functions Lconsist

on the PC-59 dataset.

its capability to handle diverse and complex scenarios with
remarkable success.

D. Ablation on Other Vision-language Models

As shown in Table 2, we evaluate the performance of vari-
ous vision-language foundation models (VLMs) integrated
into our proposed framework. To ensure a fair comparison,
we maintain consistent parameter settings across all exper-
iments, with the decoder based on Mask2Former [6]. The
results demonstrate that utilizing a more powerful vision-
language foundation model yields better performance, un-
derscoring the robustness and versatility of our approach in
the era of foundation models.

Figure 1. Ablation study of the patch size and the mask ratio of our
method on the PC-59 dataset. The color indicates the difference to
the CAT-Seg performance of 63.3 mIoU.

E. More Ablation Experiments

E.1. Impact of Average and Max Queries

We provide quantitative results of integrating average and
max queries in Table 4. The results show that combining
average and max queries yields performance gains across
multiple datasets, demonstrating their important role in rep-
resentation learning. Average queries capture global con-
text, reducing sensitivity to noise, while max queries em-
phasize salient and discriminative elements, highlighting
crucial features. This synergy strengthens segmentation ro-
bustness across diverse scenes.

E.2. The Weight γ of Lconsist

As shown in Table 5, the proposed method exhibits robust-
ness to the choice of the weight coefficient γ, with γ = 1.5
selected empirically as the default parameter. This obser-
vation demonstrates the method’s robustness in achieving
consistently high performance across different weight con-
figurations, emphasizing its reliability and versatility in var-
ied scenarios.



Dataset Link Licence Sensor type
Number of

images
Number of

classes

BDD100K [30] berkeley.edu custom Visible spectrum 1000 19
Dark Zurich [24] ethz.ch custom Visible spectrum 50 20
MHP v1 [16] github.com custom Visible spectrum 980 19
FoodSeg103 [29] github.io Apache 2.0 Visible spectrum 2135 104
ATLANTIS [8] github.com Flickr (images) Visible spectrum 1295 56
DRAM [7] ac.il custom (in download) Visible spectrum 718 12
iSAID [27] github.io Google Earth (images) Visible spectrum 4055 16
ISPRS Potsdam [5] isprs.org no licence provided* Multispectral 504 6
WorldFloods [21] github.com CC NC 4.0 Multispectral 160 3
FloodNet [23] github.com custom Visible spectrum 5571 10
UAVid [18] uavid.nl CC BY-NC-SA 4.0 Visible spectrum 840 8
Kvasir-Inst. [13] simula.no custom Visible spectrum 118 2
CHASE DB1 [10] kingston.ac.uk CC BY 4.0 Microscopic 20 2
CryoNuSeg [19] kaggle.com CC BY-NC-SA 4.0 Microscopic 30 2
PAXRay-4 [25] github.io custom Electromagnetic 180 4x2
Corrosion CS [3] figshare.com CC0 Visible spectrum 44 4
DeepCrack [17] github.com custom Visible spectrum 237 2
PST900 [26] github.com GPL-3.0 Electromagnetic 288 5
ZeroWaste-f [2] ai.bu.edu CC-BY-NC 4.0 Visible spectrum 929 5
SUIM [12] umn.edu MIT Visible spectrum 110 8
CUB-200 [28] caltech.edu custom Visible spectrum 5794 201
CWFID [11] github.com custom Visible spectrum 21 3

Table 7. Details of the datasets in the MESS benchmark [4]. It consists of 22 datasets with 448 categories and 25,079 images covering four
different data types: visible spectrum, multispectral, microscopic and electromagnetic.

E.3. Loss Function Lconsist

As shown in Table 6, we investigate various metrics to de-
fine the loss function, including MSE, Smooth L1, cross-
entropy, and KL divergence. The results indicate that the
choice of loss function significantly influences model per-
formance, with Smooth L1 achieving the best results. This
can be attributed to its effectiveness in mitigating the influ-
ence of outliers and noise, which is essential for learning
robust scene distributional representations. As a result, it
enhances the model’s stability, generalization, and overall
reliability.

E.4. Patch Size and Mask Ratio

Figure 1 illustrates the impact of different mask patch
sizes and mask ratios on model performance. Our method
demonstrates significant improvements with patch sizes
ranging from 4 to 8 and mask ratios between 0.3 and 0.7.
The optimal performance is achieved when the patch size
is set to 8 and the mask ratio is 0.5. This underscores the
crucial role of selecting both patch size and mask ratio to
enhance the model’s performance.

F. Further Qualitative Examples

We present qualitative comparisons with the previous state-
of-the-art method, CAT-Seg, showcasing the consistent su-
periority of our method across a variety of scenarios. Our
method demonstrates significant improvements in the com-
pleteness of spatial regions. For example, the second and
fourth rows of Figure 2 and the fourth row of Figure 3 illus-
trate more comprehensive spatial coverage. Additionally,
our approach delivers a more reasonable spatial distribu-
tion and avoids trivial prediction results, as evident in the
first and third rows of Figure 2, the second row of Figure
3, and the first and third rows of Figure 4. Furthermore,
our method excels in accurately detecting object shapes, as
demonstrated in the second row of Figure 5 and the sec-
ond and third rows of Figure 4. These improvements can
be attributed to the model’s ability to effectively capture the
spatial relationships between scene elements and to learn
implicit semantic synergies between different target classes.
Consequently, our approach achieves superior segmentation
performance in diverse settings.

https://bdd-data.berkeley.edu
https://doc.bdd100k.com/license.html
https://www.trace.ethz.ch/publications/2019/GCMA_UIoU/
https://github.com/ZhaoJ9014/Multi-Human-Parsing
https://lv-mhp.github.io/
https://xiongweiwu.github.io/foodseg103.html
https://github.com/smhassanerfani/atlantis
https://faculty.runi.ac.il/arik/site/artseg/Dram-Dataset.html
https://captain-whu.github.io/iSAID/dataset.html
https://www.isprs.org/education/benchmarks/UrbanSemLab/default.aspx
https://github.com/spaceml-org/ml4floods/blob/main/jupyterbook/content/worldfloods_dataset.md
https://github.com/BinaLab/FloodNet-Supervised_v1.0
https://cdla.dev/permissive-1-0/
https://uavid.nl
https://datasets.simula.no/kvasir-instrument/
https://datasets.simula.no/kvasir-instrument/
https://blogs.kingston.ac.uk/retinal/chasedb1/
https://www.kaggle.com/datasets/ipateam/segmentation-of-nuclei-in-cryosectioned-he-images
https://constantinseibold.github.io/paxray/
https://constantinseibold.github.io/paxray/
https://figshare.com/articles/dataset/Corrosion_Condition_State_Semantic_Segmentation_Dataset/16624663
https://github.com/yhlleo/DeepCrack/tree/master
https://github.com/yhlleo/DeepCrack/tree/master
https://github.com/ShreyasSkandanS/pst900_thermal_rgb
http://ai.bu.edu/zerowaste/
https://irvlab.cs.umn.edu/resources/suim-dataset
https://www.vision.caltech.edu/datasets/cub_200_2011/
https://www.vision.caltech.edu/datasets/cub_200_2011/
https://github.com/cwfid/dataset
https://github.com/cwfid/dataset


Figure 2. Qualitative results on the ADE20K validation set. From left to right: visual results predicted by CAT-Seg and Ours, and Ground
Truth.



Figure 3. Qualitative results on the ADE20K validation set. From left to right: visual results predicted by CAT-Seg and Ours, and Ground
Truth.



Figure 4. Qualitative results on the ADE20K validation set. From left to right: visual results predicted by CAT-Seg and Ours, and Ground
Truth.



Figure 5. Qualitative results on the ADE20K validation set. From left to right: visual results predicted by CAT-Seg and Ours, and Ground
Truth.



Figure 6. Qualitative results on the ADE20K validation set. From left to right: visual results predicted by CAT-Seg and Ours, and Ground
Truth.
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