
Learned Image Compression with Hierarchical Progressive Context Modeling

Supplementary Material

In
p

u
t

Im
a
g

e

Fa
ct
o
ri
ze
d

O
u

tp
u

t
Im

a
g

e

𝑦 𝑧

bits bits

𝑔𝑎

𝑔𝑠

C
o

n
v

k
4
s2

R
e
sB

lo
ck

 (
×

L1
)

C
o

n
v

k
2
s2

R
e
sB

lo
ck

 (
×

L2
)

C
o

n
v

k
2
s2

R
e
sB

lo
ck

 (
×

L3
)

C
o

n
v

k
2
s2

ℎ𝑎

R
e
sB

lo
ck

 (
×

L4
)

C
o

n
v

k
2
s2

R
e
sB

lo
ck

 (
×

L5
)

C
o

n
v

k
2
s2

ℎ𝑠

R
e
sB

lo
ck

 (
×

L4
)

D
e
co

n
v

k
2
s2

R
e
sB

lo
ck

 (
×

L5
)

D
e
co

n
v

k
2
s2

D
e
co

n
v

k
4
s2

R
e
sB

lo
ck

 (
×

L1
)

D
e
co

n
v

k
2
s2

R
e
sB

lo
ck

 (
×

L2
)

D
e
co

n
v

k
2
s2

R
e
sB

lo
ck

 (
×

L3
)

D
e
co

n
v

k
2
s2

Hierarchical Progressive
Context Modeling

𝐻 2
×
𝑊 2

×
9
6

𝐻 4
×
𝑊 4

×
1
9
2

𝐻 8
×
𝑊 8

×
3
8
4

𝐻 1
6
×
𝑊 1
6
×
3
2
0

𝐻 1
6
×
𝑊 1
6
×
2
5
6

𝐻 3
2
×
𝑊 3
2
×
2
5
6

Figure A. Overall architecture of our proposed model. The detailed structure of the ResBlock is shown in Fig. D. ‘k2s2’ represents the
convolution layer with kernel size as 2 and stride as 2.

A. Overall architecture
The overall architecture of our proposed model is shown
in Fig. A. Following the design of transform networks in
previous learned image compression methods [4], we adopt
residual blocks along with down-sampling and up-sampling
layers to establish nonlinear transforms ga, gs, ha and hs.
Specifically, we use a single convolution layer with a stride
of 2 or 4 for both down-sampling and up-sampling opera-
tions. The kernel size of the input down-sampling layer and
output up-sampling layer is set as 4, and the kernel sizes in
other down-sampling layers and up-sampling layers are set
as 2 to reduce complexity. Additionally, we utilize the ad-
vanced FasterNet [2] blocks as the ResBlock in our model.
The detailed structure of the ResBlock is presented in Fig. D
(a). The PConv is the partial convolution layer, which pro-
cesses spatial dense convolution only on partial channels. In
our HPCM-Base model, the number of ResBlocks at differ-
ent stages is set as [L1, L2, L3, L4, L5] = [2, 2, 4, 1, 3]. In
our HPCM-Large model, the depth of L3 stage is increased
for enhanced transform capacity, [L1, L2, L3, L4, L5] =
[2, 2, 8, 1, 3].

B. Structure of Entropy Parameter Networks
Figure C shows the network structure of the entropy pa-
rameter network gep. gep contains a 1×1 convolution layer
followed by multiple DepthConvBlocks. The detailed struc-

ture of the DepthConvBlock is shown in Fig.D (b). To re-
duce the model parameters, we share the weights of Depth-
ConvBlocks across different coding steps. We use two dif-
ferent entropy parameter networks. One is used for cod-
ing ŷS1 and ŷS2, denoted as gS1+S2

ep . Another is used for
coding ŷS3, denoted as gS3

ep . To enhance the adaptability
of shared networks, we introduce step adaptive embedding
into entropy parameter networks to modulate the weight
of each channel. In our HPCM-Base model, the num-
bers of DepthConvBlocks are set as [N1, N2] = [2, 1] and
[N1, N2] = [3, 2] in gS1+S2

ep and gS3
ep , respectively. In our

HPCM-Large model, the numbers of DepthConvBlocks are
set as [N1, N2] = [2, 2] and [N1, N2] = [4, 3] in gS1+S2

ep

and gS3
ep , respectively.

C. Detailed Hierarchical Coding Schedule

Figure E presents the detailed multi-scale partition process
and coding schedules on eight channel groups of ŷ. Dif-
ferent multi-scale partition methods are applied to differ-
ent channel groups to enable the interaction of spatial and
channel-wise context information. We design the coding
schedule on ŷS3 following previous studies [7, 9], which
fully exploits the spatial correlation and enhances context
diversity.

Figure F illustrates the detailed coding process for dif-
ferent coding step allocations. We present the coding step

0.1 0.2 0.3 0.4 0.5
bits per pixel

15

16

17

18

19

20

21

M
S-

SS
IM

 (d
B)

MLIC++ (NCW ICML'23)
FLIC (ICLR'24)
HPCM-Base (ours)
HPCM-Large (ours)

0.1 0.2 0.3 0.4 0.5
bits per pixel

15

16

17

18

19

20

21

22

M
S-

SS
IM

 (d
B)

MLIC++ (NCW ICML'23)
FLIC (ICLR'24)
HPCM-Base (ours)
HPCM-Large (ours)

Figure B. Rate-distortion curves on different datasets. The left one is tested on the CLIC Pro Valid dataset, and the right one is tested on
the Tecnick dataset.

D
e
p

th
C

o
n

vB
lo

ck
 (
×

N
1
)

C
o

n
v

k
1
s1

D
e
p

th
C

o
n

vB
lo

ck
 (
×

N
2
)

×

nn.Parameter(1, C, 1, 1)

Shared weights

𝜓𝑖𝐶𝑜𝑛𝑐𝑎𝑡 ො𝑦<𝑖 , 𝐶𝑖

Figure C. The network structure of entropy parameter network
gep. The detailed structure of the DepthConvBlock is illustrated
in Fig. D.

PConv k3s1

Conv k1s1

LeakyReLU

Conv k1s1

+

(a) ResBlock

DWConv k3s1

Conv k1s1

LeakyReLU

Conv k1s1

+

(b) DepthConvBlock

Figure D. The detailed structure of the ResBlock and DepthCon-
vBlock.

(2, 3, 3), (2, 3, 12), and (4, 3, 6) for coding (ŷS1, ŷS2, ŷS3),
respectively.

Table A. Comparison of training speed of various methods.

Model
Training Speed ↑

(steps/s)
ELIC (CVPR’22) [4] 4.07
STF (CVPR’22) [11] 3.31
TCM (CVPR’23) [8] 1.28
MLIC++ (NCW ICML’23) [5] 1.24
FLIC (ICLR’24) [6] 1.93
WeConvene (ECCV’24) [3] 1.43
HPCM-Base (ours) 3.67
HPCM-Large (ours) 2.88

D. Comparison of Training Speed
We compare the training speed of the proposed HPCM-
Base and HPCM-Large with recent advanced methods in
Table A. The training time is evaluated on one NVIDIA
GeForce RTX 3090 GPU, with training batch size as 8 im-
ages and patch size as 256×256. Compared to recent state-
of-the-art learned image compression methods like [5, 6],
our methods achieve faster training speed.

E. Additional Rate-Distortion Performance
Figure B presents the rate-distortion performance of our
model optimized for MS-SSIM. Compared to recent ad-
vanced learned image compression methods, our proposed
methods achieve superior performance at higher bitrates.

F. Additional Results on Coding Time
Table C breaks down coding times into network inference
(TNet) and arithmetic coding (TAC). For prior studies, we
used their open-sourced models and code, as shown in Ta-

Table B. Code links of various methods. We use these open-source implementations to evaluate the compression performance and compu-
tational complexity of each model.

Model Code Link
ELIC (CVPR’22) [4] https://github.com/JiangWeibeta/ELIC
STF (CVPR’22) [11] https://github.com/Googolxx/STF
TCM (CVPR’23) [8] https://github.com/jmliu206/LIC_TCM
MLIC++ (NCW ICML’23) [5] https://github.com/JiangWeibeta/ELIC
FLIC (ICLR’24) [6] https://github.com/qingshi9974/ICLR2024-FTIC
MambaVC (Arxiv’24) [10] https://github.com/QinSY123/2024-MambaVC
WeConvene (ECCV’24) [3] https://github.com/fengyurenpingsheng/WeConvene

Table C. Coding times of various methods. Times are in millisec-
onds (ms).

Models
Encoding Decoding

kMACs/pixel
TNet TAC TTotal TNet TAC TTotal

ELIC 44 82 126 37 74 111 573.88
TCM 89 110 199 83 119 202 1823.58

MLIC++ 73 117 190 74 152 226 1282.81
HPCM-Base 58 25 83 57 24 81 918.57

Table D. Abaltion studies on the number of hierarchical stages.

Models kMACs/pixel BD-Rate
w/o hierarchical (1-stage) 1107.48 1.07%

2-stage 954.17 0.35%
HPCM-Base (3-stage) 918.57 0.00%

4-stage 911.44 0.18%

ble B. Across different models, TNet generally increases
with higher kMACs/pixel; this aligns with HPCM-Base ex-
hibiting a higher TNet than ELIC. As for TAC , it varies
across models due to different implementations in the re-
leased code. Our arithmetic coding implementation im-
proves upon the widely used CompressAI-based [1] im-
plementation by enabling more efficient data exchange be-
tween Python and C. This optimization significantly re-
duces TAC .

Since coding time is implementation-dependent, we
focus on comparing the kMACs/pixel to measure com-
putational complexity. Fig. ?? in the maintext plots
“kMACs/pixel vs. BD-Rate”, showing that our method
achieves superior performance-complexity trade-offs com-
pared to current SOTA methods.

G. Additional Ablation Studies
G.1. Ablation Studies on Hierarchical Coding

Stages
We further provide ablation studies to verify the superior-
ity of the 3-stage model. As shown in Table D, the 3-stage
model achieves lower kMACs/pixel and better performance

Table E. Ablation studies on shared parameters in context models.

Models kMACs/pixel Params (M) BD-Rate
HPCM-Base 918.57 68.50 0.00%

w/o shared params 918.57 189.99 -0.15%

compared to the 1-stage and 2-stage variants, as it more
effectively captures long-range spatial contexts. Increas-
ing the number of stages to 4 slightly reduces computa-
tional complexity, but the performance is marginally worse.
This is because allocating coding steps to capture extremely
long-range spatial contexts is not cost-effective. Therefore,
we adopt the 3-stage model as HPCM-base.

G.2. Ablation Studies on Shared Parameters of
Context Models

We have tested a variant of HPCM-Base using context mod-
els with non-shared parameters at all scales. As shown
in Table E, this model achieves comparable performance
but with a substantial increase in the number of parame-
ters. This indicates that employing different network set-
tings across scales offers limited benefits to our model.
Therefore, we shared the parameters of context models at all
scales to significantly reduce the model’s parameter count.

H. Additional Visual Comparison Results
Fig. G and Fig. H presents the reconstructed images of our
proposed HPCM-Base, HPCM-Large, and various methods
[4, 5, 11].

References
[1] Jean Bégaint, Fabien Racapé, Simon Feltman, and

Akshay Pushparaja. CompressAI: A PyTorch library
and evaluation platform for end-to-end compression
research. arXiv preprint arXiv:2011.03029, 2020. 3

[2] Jierun Chen, Shiu-hong Kao, Hao He, Weipeng Zhuo,
Song Wen, Chul-Ho Lee, and S.-H. Gary Chan. Run,
don’t walk: Chasing higher FLOPS for faster neural
networks. In IEEE/CVF Conference on Computer Vi-

https://github.com/JiangWeibeta/ELIC
https://github.com/Googolxx/STF
https://github.com/jmliu206/LIC_TCM
https://github.com/JiangWeibeta/ELIC
https://github.com/qingshi9974/ICLR2024-FTIC
https://github.com/QinSY123/2024-MambaVC
https://github.com/fengyurenpingsheng/WeConvene

scale-1 ො𝑦𝑆1

scale-2 ො𝑦𝑆2

scale-3 ො𝑦𝑆3

ො𝑦

channel groups

up-scaling up-scaling

……

……

……

……

……

……

……

……

multi-scale
partition

Progressive Context Fusion

scale-1 latents scale-2 latents scale-3 latents context extractionlatents before coding coding steps

Figure E. The detailed coding progress of our proposed hierarchical coding schedule.

sion and Pattern Recognition (CVPR), pages 12021–
12031, 2023. 1

[3] Haisheng Fu, Jie Liang, Zhenman Fang, Jingning Han,
Feng Liang, and Guohe Zhang. Weconvene: Learned
image compression with wavelet-domain convolution
and entropy model. In European Conference on Com-
puter Vision (ECCV), pages 37–53, 2024. 2, 3

[4] Dailan He, Ziming Yang, Weikun Peng, Rui Ma,
Hongwei Qin, and Yan Wang. ELIC: Efficient learned
image compression with unevenly grouped space-
channel contextual adaptive coding. In IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 5708–5717, 2022. 1, 2, 3

[5] Wei Jiang and Ronggang Wang. MLIC++: Lin-
ear complexity multi-reference entropy modeling for
learned image compression. In ICML Workshop,
2023. 2, 3

[6] Han Li, Shaohui Li, Wenrui Dai, Chenglin Li, Junni
Zou, and Hongkai Xiong. Frequency-aware trans-
former for learned image compression. In Inter-
national Conference on Learning Representations
(ICLR), 2024. 2, 3

[7] Yuqi Li, Haotian Zhang, and Dong Liu. Flexible cod-
ing order for learned image compression. In IEEE
International Conference on Visual Communications
and Image Processing (VCIP), pages 1–5, 2023. 1

ො𝑦

channel group 1

…
…

…
…

scale-1 ො𝑦𝑆1

scale-2 ො𝑦𝑆2

scale-3 ො𝑦𝑆3

Progressive Context Fusion

multi-scale
partition

channel group 8

up-scaling up-scaling

…
…

…
…

…
…

…
…

…
…

…
…

…
…

(a) Coding step (2, 3, 3) on scale (ො𝑦𝑆1, ො𝑦𝑆2, ො𝑦𝑆3). There are 8 coding steps in total.

ො𝑦

channel group 1

…
…

……

…
…

scale-1 ො𝑦𝑆1

scale-2 ො𝑦𝑆2

scale-3 ො𝑦𝑆3

Progressive Context Fusion

multi-scale
partition

channel group 8

up-scaling up-scaling

…
…

…
…

…
…

…
…

…
…

…
…

…
…

……

(b) Coding step (2, 3, 12) on scale (ො𝑦𝑆1, ො𝑦𝑆2, ො𝑦𝑆3). There are 17 coding steps in total.

ො𝑦

channel group 1

…
…

……

…
…

scale-1 ො𝑦𝑆1

scale-2 ො𝑦𝑆2

scale-3 ො𝑦𝑆3

Progressive Context Fusion

multi-scale
partition

channel group 8

up-scaling up-scaling

…
…

…
…

…
…

…
…

…
…

…
…

…
…

……

……

……

(c) Coding step (4, 3, 6) on scale (ො𝑦𝑆1, ො𝑦𝑆2, ො𝑦𝑆3). There are 13 coding steps in total.

scale-1 latents scale-2 latents scale-3 latents context extractionlatents before coding coding steps

Figure F. The detailed coding process for (a) coding step (2, 3, 3), (b) coding step (2, 3, 12), and (c) coding step (4, 3, 6) for coding
(ŷS1, ŷS2, ŷS3).

Original: bpp / PSNR HCPM-Base (ours): 0.1533 / 32.93 HCPM-Large (ours): 0.1350 / 32.67

ELIC: 0.1852 / 32.92 MLIC: 0.1569 / 32.96STF: 0.1869 / 32.91

Figure G. Visual comparison of reconstructed images of Kodim04 in the Kodak dataset with various learned image compression methods.

[8] Jinming Liu, Heming Sun, and Jiro Katto. Learned
image compression with mixed Transformer-CNN
architectures. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
14388–14397, 2023. 2, 3

[9] Fabian Mentzer, Eirikur Agustson, and Michael
Tschannen. M2T: Masking Transformers twice for
faster decoding. In IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 5317–5326,
2023. 1

[10] Shiyu Qin, Jinpeng Wang, Yiming Zhou, Bin Chen,
Tianci Luo, Baoyi An, Tao Dai, Shutao Xia, and
Yaowei Wang. Mambavc: Learned visual com-
pression with selective state spaces. arXiv preprint
arXiv:2405.15413, 2024. 3

[11] Renjie Zou, Chunfeng Song, and Zhaoxiang Zhang.
The devil is in the details: Window-based attention
for image compression. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 17471–17480, 2022. 2, 3

Original: bpp / PSNR HCPM-Base (ours): 0.2010 / 31.93 HCPM-Large (ours): 0.1677 / 31.59

ELIC: 0.2369 / 32.03 MLIC: 0.2125 / 32.14STF: 0.2501 / 32.06

Figure H. Visual comparison of reconstructed images of Kodim19 in the Kodak dataset with various learned image compression methods.

	Overall architecture
	Structure of Entropy Parameter Networks
	Detailed Hierarchical Coding Schedule
	Comparison of Training Speed
	Additional Rate-Distortion Performance
	Additional Results on Coding Time
	Additional Ablation Studies
	Ablation Studies on Hierarchical Coding Stages
	Ablation Studies on Shared Parameters of Context Models

	Additional Visual Comparison Results

