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1. Additional Results

1.1. Additional Quantitative Results
RAW denoising. Table 1 and Table 2 present the SSIM [17]
and LPIPS [22] results for raw image denoising. As shown
in Table 2, our method demonstrates perceptual quality im-
provements consistent with the findings in terms of fidelity,
further confirming its effectiveness.
Gaussian denoising. Table 3 provides results for grayscale
image denoising under the Gaussian noise assumption. Our
method outperforms the previous local DNN-based method,
LineDL [10], highlighting its superior performance.
Super-Resolution. Table 4 and Table 5 report the PSNR
and SSIM [17] results for ×2 and ×3 image upscaling fac-
tors, respectively.

1.2. Additional Qualitative Results
In Fig. 1 and Fig. 2, we provide more visual results on RAW
and Gaussian grayscale image denoising, respectively.

2. More Implementation Details

Network architecture. Our model employs three blocks
for both the intra-line encoder and decoder. The base chan-
nel dimensions for xt, ht, and ct are set to 64. In each stage
of the intra-line block, one-quarter of the channels are allo-
cated for expanding strip convolutions with kernel sizes of
1 × 5, 1 × 7, and 1 × 9, respectively. Convolutional layers
within the intra-line block are followed by LeakyReLU acti-
vation functions, and skip connections are incorporated be-
tween blocks. In the inter-line processing module, all con-
volutional layers utilize a 3× 3 kernel. Since the public im-
plementation of LineDL is not available, we reimplemented
the method and fully trained it based on the official settings.
Training details. We train our model using the Adam op-
timizer [12] with a cosine annealing learning rate sched-
ule [14]. For RAW image denoising, the model is trained
for 1000 epochs with a batch size of 1 and a patch size
of 512 × 512. For Gaussian image denoising and super-
resolution tasks, training is conducted for 2× 105 iterations
with a batch size of 16 and a patch size of 128 × 128. For

line grouping, an overlap ratio of 1
2 is applied between adja-

cent groups, with the final result obtained by averaging the
overlapping regions.
Efficiency evaluation. The shared memory demand in lo-
cal methods depends on the shape, particularly the channel
dimensions, of the hidden and cell states in both LineDL
and our method. The memory demand reported for LineDL
[10] considers only the largest feature tensor. In contrast,
our evaluation utilizes the official PyTorch profiling tool
(torch.profiler.ProfilerActivity.CUDA) and also re-
ports the shared memory usage for hidden state features.

3. Additional Discussion
The classification of DNNs. Although certain deep neu-
ral networks (DNNs), particularly convolutional neural net-
works (CNNs), can operate in local regions, we categorize
them as global methods due to their receptive fields (RF) of-
ten extending beyond the height of a single line group. For
example, the RF of FSRCNN is 17×17, and that of UNet is
about 106×106. This characteristic makes them unsuitable
for line-buffer-based processing.
Running time. Since we simulate line buffers on a GPU
by manually controlling data transfers with a for-loop for a
comprehensive comparison with global DNNs, the advan-
tage in latency of local DNNs cannot be enjoyed by the cur-
rent implementation. The targeted streaming scenario is in-
trinsically suited for data fragmentation and incurs no extra
runtime at the algorithm level. Image sensors naturally out-
put data line-by-line, and our method is designed to operate
as soon as sufficient lines are available, avoiding to wait
for the full image to load and thus benefiting end-to-end la-
tency. Nevertheless, we give examples of the running time
here. Specifically, for denoising a 1920 × 1080 HD image,
the running time of DnNN [20] is 101.78µs, while the base-
line, LineDL, and our method takes 155.25µs, 558.90µs,
and 183.60µs, respectively, under the assumption of non-
overlap line groups with l = 8. For upsampling a 480×320
image to HD resolution (1920× 1080), the running time of
a typical lightweight DNN, CARN [1] is 24.05µs, while the
baseline, LineDL, and our method takes 22.88µs, 88.80µs,
and 40.80µs, respectively.
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ELD SID Mem. Req.
Type Method

×100 ×200 ×100 ×250 ×300 Param. PeakUHD

Global
(Classic)

NLM [3] 0.8420 0.7496 0.8477 0.7045 0.6004 - -
BM3D [7] 0.8463 0.7552 0.8623 0.7285 0.6287 - -

Global
(DNNs)

DnCNN [20] 0.7302 0.6387 0.5794 0.4540 0.3899 2.24MB 3.96GB
UNet [4] 0.9700 0.9197 0.9487 0.9345 0.9198 31.04MB 1.39GB
DRUNet [21] 0.9737 0.9520 0.9515 0.9305 0.9109 130.57MB 1.98GB
NAFNet [5] 0.9768 0.9477 0.9517 0.9261 0.8994 116.63MB 13.94GB
Restormer [19] 0.9776 0.9524 0.9524 0.9322 0.9118 104.51MB OOM

Local
(Classic)

Median(K = 3) [15] 0.8073 0.6933 0.7338 0.5823 0.4820 - 0.50MB
Median(K = 5) [15] 0.8332 0.7311 0.7917 0.6259 0.5240 - 0.54MB
Median(K = 7) [15] 0.8366 0.7419 0.8204 0.6525 0.5499 - 0.57MB
Wiener(K = 5) [2] 0.8460 0.7501 0.8195 0.6645 0.5592 - 1.06MB
Wiener(K = 7) [2] 0.8468 0.7581 0.8432 0.6907 0.5827 - 1.11MB
Bilateral(K = 5) [16] 0.8423 0.7436 0.8108 0.6577 0.5557 - 15.06MB
Bilateral(K = 7) [16] 0.8470 0.7542 0.8393 0.6886 0.5848 - 29.15B

Local
(DNNs)

Baseline 0.9272 0.8689 0.9257 0.8967 0.8724 6.65MB 15.0+ 0MB
LineDL [10] 0.9595 0.9087 0.9444 0.9264 0.9092 24.36MB 15.0+120.0MB
Ours 0.9624 0.9179 0.9453 0.9291 0.9120 3.37MB 8.0+ 15.0MB

Table 1. Quantitative results (SSIM) for RAW image denoising on the ELD dataset [18] and SID dataset [4]. The memory requirements
are estimated assuming FP32 precsion. Peak memory is reported in UHD (3840×2160) resolution, and the activation peak memory usage
of local DNNs is reported in the format of “current pass + shared”. Local methods operate on a line group of 8, i.e., l = 8. “OOM” denotes
that out-of-memory error occurs on an NVIDIA H100 GPU with 80GB memory. The best results in local methods are highlighted.

ELD SID Mem. Req.
Type Method

×100 ×200 ×100 ×250 ×300 Param. PeakUHD

Global
(Classic)

NLM [3] 0.1783 0.3462 0.1939 0.2812 0.3221 - -
BM3D [7] 0.0616 0.1283 0.1108 0.1763 0.2219 - -

Global
(DNNs)

DnCNN [20] 0.2356 0.3810 0.3801 0.5171 0.5499 2.24MB 3.96GB
UNet [4] 0.0350 0.0593 0.0730 0.1006 0.1250 31.04MB 1.39GB
DRUNet [21] 0.0322 0.0566 0.0705 0.1069 0.1363 130.57MB 1.98GB
NAFNet [5] 0.0347 0.0592 0.0666 0.0970 0.1252 116.63MB 13.94GB
Restormer [19] 0.0289 0.0484 0.0631 0.0955 0.1220 104.51MB OOM

Local
(Classic)

Median(K = 3) [15] 0.2035 0.3382 0.2947 04436 0.4696 - 0.50MB
Median(K = 5) [15] 0.1508 0.2688 0.2494 0.3769 0.4147 - 0.54MB
Median(K = 7) [15] 0.1309 0.2124 0.2308 0.3425 0.3902 - 0.57MB
Wiener(K = 5) [2] 0.1361 0.2408 0.2351 0.3375 0.3810 - 1.06MB
Wiener(K = 7) [2] 0.1270 0.1895 0.2219 0.3112 0.3629 - 1.11MB
Bilateral(K = 5) [16] 0.1579 0.3050 0.2359 0.3559 0.3962 - 15.06MB
Bilateral(K = 7) [16] 0.1339 0.2441 0.2082 0.3061 0.3519 - 29.15B

Local
(DNNs)

Baseline 0.0530 0.0892 0.1203 0.1823 0.2040 6.65MB 15.0+ 0MB
LineDL [10] 0.0422 0.0693 0.0776 0.1153 0.1448 24.36MB 15.0+120.0MB
Ours 0.0381 0.0647 0.0750 0.1115 0.1395 3.37MB 8.0+ 15.0MB

Table 2. Quantitative results (LPIPS) for RAW image denoising on the ELD dataset [18] and SID dataset [4]. Lower is better.



Set12 BSD68 Urban100 Mem. Req.
Type Method

15 25 50 15 25 50 15 25 50 Param. PeakUHD

Global
(Classic)

NLM [3] 31.19 28.50 24.79 30.06 27.49 24.47 30.79 27.64 23.41 - -
BM3D [7] 32.39 29.99 26.75 31.15 28.63 25.70 32.36 29.74 26.07 - -

Global
(DNNs)

DnCNN [20] 32.86 30.44 27.18 31.73 29.23 26.23 32.64 29.95 26.26 2.24MB 3.96GB
DRUNet [4] 33.25 30.94 27.90 31.91 29.48 26.59 33.44 31.11 27.96 130.57MB 1.98GB
SwinIR [13] 33.36 31.01 27.91 31.97 29.50 26.58 33.70 31.30 27.98 47.58MB 50.31GB
Restormer [19] 33.42 31.08 28.00 31.96 29.52 26.62 33.79 31.46 28.29 104.51MB OOM
HAT [6] 33.49 31.13 28.07 31.99 29.52 26.60 33.99 31.67 28.62 83.09MB OOM

Local
(Classic)

Median(K = 3) [15] 27.31 25.19 21.02 26.87 24.89 20.94 25.24 23.62 20.24 - 0.50MB
Wiener(K = 5) [2] 27.78 26.44 23.29 27.34 26.12 23.13 25.89 24.50 21.92 - 1.06MB
Bilateral(K = 5) [16] 28.61 26.58 23.89 27.74 26.14 23.67 26.26 24.31 22.05 - 15.06MB

Local
(DNNs)

Baseline 32.24 29.62 26.10 31.28 28.65 25.51 31.94 28.99 25.00 6.65MB 15.0+ 0MB
LineDL [10] 32.46 29.97 26.72 31.42 28.90 25.90 32.10 29.36 25.78 24.36MB 15.0+120.0MB
Ours 32.70 30.21 26.87 31.62 29.08 26.04 32.38 29.46 25.73 3.37MB 8.0+ 15.0MB

Table 3. Quantitative results (PSNR) for Gaussian grayscale image denoising on standard benchmark datasets.



Set5 Set14 BSDS100 Urban100 Manga109 Mem. Req.
Type Method

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM Param. PeakHD

Global
(DNNs)

FSRCNN [8] 37.05 0.9560 32.66 0.9090 31.53 0.8902 29.88 0.9020 36.67 0.9710 0.05MB 442.97MB
CARN [1] 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256 38.36 0.9765 4.45MB 506.25MB
SwinIR [13] 38.14 0.9611 33.86 0.9206 32.31 0.9012 32.76 0.9340 39.12 0.9783 47.58MB 50.31GB
HAT [6] 38.73 0.9637 35.13 0.9282 32.69 0.9060 34.81 0.9489 40.71 0.9819 83.09MB OOM
MambIR [9] 38.57 0.9627 34.67 0.9261 32.58 0.9048 34.15 0.9446 40.28 0.9806 18.61MB 64.00GB

Local
(Classic)

Nearest 30.82 0.8991 28.51 0.8446 28.39 0.8239 25.62 0.8199 28.12 0.9089 - 0.96MB
Bilinear 32.12 0.9106 29.15 0.8384 28.65 0.8090 25.95 0.8077 29.13 0.9115 - 0.96MB
Bicubic [11] 33.63 0.9292 30.23 0.8681 29.53 0.8421 26.86 0.8394 30.78 0.9338 - 0.96MB

Local
(DNNs)

Baseline 37.32 0.9573 33.03 0.9118 31.68 0.8927 30.87 0.9148 37.03 0.9727 6.67MB 8.5+ 0MB
LineDL [10] 37.59 0.9586 33.19 0.9138 31.84 0.8951 31.22 0.9189 37.44 0.9740 27.45MB 75.0+60.0MB
Ours 37.63 0.9589 33.32 0.9149 31.90 0.8960 31.43 0.9213 37.58 0.9746 3.39MB 3.8+ 7.5MB

Table 4. Quantitative results (PSNR and SSIM) for super-resolution (×2) on the standard benchmark datasets. Peak memory is reported in
upscaling HD (1920× 1080) resolution with a factor of 4, assuming FP32 precsion.

Set5 Set14 BSDS100 Urban100 Manga109 Mem. Req.
Type Method

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM Param. PeakHD

Global
(DNNs)

FSRCNN [8] 33.18 0.9140 29.37 0.8240 28.53 0.7910 26.43 0.8080 31.10 0.9210 0.05MB 442.97MB
CARN [1] 34.29 0.9255 30.29 0.8407 29.06 0.8034 28.06 0.8493 33.50 0.9440 4.45MB 506.25MB
SwinIR [13] 34.62 0.9289 30.54 0.8463 29.20 0.8082 28.66 0.8624 33.98 0.9478 47.58MB 50.31GB
HAT [6] 35.16 0.9335 31.33 0.8576 29.59 0.8177 30.70 0.8949 35.84 0.9567 83.09MB OOM
MambIR [9] 35.08 0.9323 30.99 0.8536 29.51 0.8157 29.93 0.8841 35.43 0.9546 18.61MB 64.00GB

Local
(Classic)

Nearest 27.93 0.8123 26.00 0.7330 26.17 0.7065 23.34 0.6992 25.04 0.8157 - 0.96MB
Bilinear 29.54 0.8504 26.96 0.7526 26.77 0.7177 23.99 0.7135 26.15 0.8372 - 0.96MB
Bicubic [11] 30.40 0.8678 27.55 0.7736 27.20 0.7379 24.45 0.7343 26.94 0.8554 - 0.96MB

Local
(DNNs)

Baseline 33.64 0.9191 29.82 0.8321 28.68 0.7947 27.22 0.8308 32.16 0.9324 6.67MB 8.5+ 0MB
LineDL [10] 33.84 0.9217 29.99 0.8353 28.82 0.7981 27.46 0.8362 32.48 0.9359 27.45MB 75.0+60.0MB
Ours 33.92 0.9224 30.04 0.8367 28.85 0.7994 27.62 0.8410 32.69 0.9379 3.39MB 3.8+ 7.5MB

Table 5. Quantitative results (PSNR and SSIM) for super-resolution (×3) on the standard benchmark datasets. Peak memory is reported in
upscaling HD (1920× 1080) resolution with a factor of 4, assuming FP32 precsion.
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Figure 1. Additional qualitative results for RAW image denoising.



GT Noisy NLM BM3D

Bilateral Baseline LineDL Ours

GT Noisy NLM BM3D

Bilateral Baseline LineDL Ours

GT Noisy NLM BM3D

Bilateral Baseline LineDL Ours

Figure 2. Qualitative results for Gaussian image denoising.
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