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1. More Experimental Results

Normal Estimation. The PGP curve represents the per-
centage of good point normals (PGP) under a series of
given angle thresholds, providing a comprehensive evalu-
ation of normal estimation accuracy across varying levels
of precision requirements. In Fig. 1, the PGP curves of ori-
ented normals for unsupervised methods clearly illustrate
that our method consistently achieves superior performance
across all thresholds and all data categories. This highlights
the robustness of our approach in capturing accurate nor-
mals, even under challenging scenarios. Similarly, the PGP
curves of unoriented normals, as depicted in Fig. 2, further
demonstrate the effectiveness of our method, showcasing
improved performance over baseline methods in all tested
conditions. To validate the practical applicability of our
method, we extended the evaluation to real-world scanned
data from the ScanNet dataset [1]. This dataset provides
complex, noisy, and unstructured 3D data that are captured
in real-world indoor scenarios. As shown in Fig. 3, our
approach achieves significantly improved results compared
to previous methods, with visual examples demonstrating
more accurate normal estimations. Overall, the superior
performance across synthetic and real-world datasets under-
lines the robustness, accuracy, and generalizability of our
approach for normal estimation in noisy point clouds.

Surface Reconstruction. As illustrated in Fig. 4, we pro-
vide a detailed visual comparison of reconstructed sur-
faces generated from point clouds with varying noise lev-
els. These results highlight our method’s ability to main-
tain surface integrity and recover fine details, even in the
presence of significant noise, outperforming baseline ap-
proaches in terms of clarity and structural fidelity. Fur-
ther, in Fig. 5, we visualize reconstructed surfaces from
real scanned point clouds of the 3D Scene dataset [11].
The results demonstrate our method’s robustness in process-
ing real-world data, effectively handling challenges such as
noise, irregular sampling, and complex geometries, produc-
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ing reconstructions that are both accurate and visually co-
herent. In Fig. 6, we explore an even more challenging
scenario by generating surfaces from wireframe-like point
clouds, characterized by extreme sparsity and non-uniform
sampling. Remarkably, our approach successfully recon-
structs surfaces with consistent geometry and minimal arti-
facts, demonstrating its adaptability and resilience to highly
irregular data distributions. Overall, these visual compar-
isons confirm the versatility and effectiveness of our method
across various challenging datasets, making it well-suited
for both synthetic and real-world applications.

Point Cloud Denoising. We compare our approach with
baseline methods that rely on supervised training with
ground truth labels. In Fig. 7, we present a visual compar-
ison of denoising results on the PointCleanNet dataset [8]
for various methods. Our approach demonstrates a su-
perior ability to recover clean and smooth surfaces from
noisy point clouds while preserving geometric details, even
in challenging cases with significant noise levels. To fur-
ther evaluate its practical applicability, we also apply our
method to real-world scanned data. Fig. 8 showcases
denoising results on selected scenes from the Paris-Rue-
Madame dataset [9]. Despite not requiring ground truth su-
pervision, our method effectively mitigates noise and pro-
duces visually coherent surfaces, demonstrating its robust-
ness and adaptability to real-world scenarios. These results
validate the effectiveness of our designed loss functions,
which guide the network to accurately infer the clean sur-
faces from various noisy point clouds. By leveraging statis-
tical reasoning rather than relying on explicit ground truth,
our method achieves reliable performance in both synthetic
and real-world applications, setting a new standard for un-
supervised point cloud denoising. The above results con-
firm the suitability of our method for real-world applica-
tions in 3D vision tasks.

Comparison with NeuralGF on runtime & convergence.
Since our method includes more sophisticated losses com-
pared to NeuralGF [3], the optimization incurs a slightly
higher per-instance time cost (~ +0.4%). However, de-



Table 1. Ablations for unoriented and oriented normal estimation on the FamousShape dataset. We decompose L into £;4 and L.

| Unoriented Normal RMSE [ Oriented Normal RMSE

Category Noise Density Average Noise Density Average
None Low Medium High | Stripe Gradient €€/ None Low Medium High | Stripe Gradient g
Liq 25.19 33.08 3842 46.76|28.80 25.51 3296 ||37.51 6744 84.01 69.70|45.80 3595 56.73
Lig + Lpg + Lsq 1574 23.08 54.64 56.10|14.33 15.53 2990 |[22.11 39.46 8836 92.84|17.97 2194 47.11
Lig+ Lpqg + Loqg + Ly | 1698 16.60 3383 41.23|18.85 18.37 2431 [126.56 2391 5590 83.79|28.98 27.41 41.09
Lig+ Lpg+ Lsg + Ln | 1341 1670 3111 4048 |13.00 12.78 21.25 || 19.42 1948 36.03 5038|1476 13.29 25.56
@) Lig+ Lpg+ Ln + Ly |12.00 1587 30.00 3930|1195 13.14 20.38 || 14.66 18.89 3496 55.00|15.12 16.45 25.85
Lig+ Lsqg+ Ln+ Ly [12.61 1559 3019 39.13| 1238  11.69 20.27 || 16.06 1830 3879 4826|1570 14.99 25.35
Lig+ Ln + Ly 12.28 15.63 29.88 39.26|12.18 12.19 20.24 || 1498 1825 34.62 50.82|14.95 21.90 25.92
Lpg+ Ln+ Ly 11.88 15.72 2997 39.05| 1224 12.14 20.17 || 13.32 1834 3487 4844|15.08 23.17 25.54
Lsg+ Ln + Ly 12.49 1547 2994 39.19|1249 1211 20.28 || 15.06 17.15 3525 4827|1544 16.62 24.63
Lpag+Lsag+ Ln+ Ly |11.81 1573 2997 39.08|12.01 1143 20.00 || 13.31 1836 34.89 48.87|15.15 14.07 24.11
(b) w/o Aggregation |12.05 16.02 3004 39.18|11.96 11.51 | 20.13 |[13.82 18.53 35.11 4934|1446 1385 | 24.19
© K=4 11.89 16.00 30.22 39.51|17.45 11.17 21.04 || 14.80 19.07 35.16 51.31|21.49 13.65 2591
K =16 1371 1577 29.86 39.32|12.11 13.49 20.71 |[20.41 18.44 3490 51.19|14.14 17.87 26.16
Full [11.90 15.84 2990 39.08|11.82 11.36 | 19.98 |[13.71 1840 3497 4925|1435 1376 | 24.07

Table 2. Comparison with NeuralGF on convergence.

Iterations | 10,000 20,000
NeuralGF [3] 19.47 18.70
Ours 19.22 17.00

spite this small overhead, our method can achieve better
convergence. In Table 2, we provide the comparison of av-
erage oriented-normal RMSE on the PCPNet dataset at dif-
ferent iterations. The richer constraints of our method lead
to lower error within the same iterations.

2. Discussion

Hyperparameter tuning in loss. Compared to prior works,
we enhance existing losses from a new perspective and in-
troduce novel richer constraints to boost performance. To
ensure each loss term contributes meaningfully and no term
is orders of magnitude larger or smaller, we let terms with
larger raw values receive smaller weight factors, and vice
versa. The weights A\; and Ay are chosen via small grid
searches on a held-out subset. We find that varying each
weight by +50% changes the average RMSE by < 3%,
showing low sensitivity. For \;, we recommend trying
{0.05,0.1,0.3} to choose the value that minimizes normal
RMSE. \; are less sensitive and can remain the defaults un-
less targeting extremely noisy or highly detailed data. In
Lsq, a 10x factor on the signed distances of surface points
forces them to be located on the zero level set and balances
surface fitting and denoising. We will release code with de-
fault settings for transparency.

Detail preservation and over-smoothing on real data.
Our primary focus in this work is on accurately estimat-
ing normals from noisy point clouds. In Fig. 8, we demon-
strate an extension of our method to point cloud denoising

on real-world scans from the Paris-Rue-Madame dataset.
While multiple rounds of denoising noticeably improve the
visual quality of the surface, fully recovering all fine de-
tails remains challenging, particularly because real-world
scans often contain a substantial number of outliers. These
outliers can skew the surface filtering process, leading to
localized over-smoothing even as most noise is removed.
Our multi-round filtering on the point cloud denoising task
highlights this trade-off: while most outliers and small ar-
tifacts are successfully removed, some local regions appear
overly smoothed. We acknowledge this limitation and agree
that in scenes with many outliers, our method may strug-
gle to balance outlier rejection and structure preservation.
We note that this localized over-smoothing is not unique to
our approach, some state-of-the-art point cloud denoising
methods exhibit similar behavior when aggressively remov-
ing noise. To address datasets with heavy outlier contami-
nation, a practical strategy is to incorporate a lightweight
preprocessing step that detects and removes outliers before
applying the denoising pipeline. Integrating robust outlier
filtering or adaptive smoothing strategy into the end-to-end
framework is an important direction for future work.

3. Limitation

Our method can be applied to various point cloud process-
ing tasks, as demonstrated in our experiments. However, a
limitation of our approach is that the neural network must be
optimized individually for each point cloud. As a result, the
trained model cannot be directly applied to shapes that were
not part of the optimization process. This limitation is sim-
ilar to some implicit representation methods [5—7, 10] that
overfit to individual data, making our method less generaliz-
able compared to pre-trained models like SHS-Net [4] that
can be used out-of-the-box for normal estimation on new



o No Noise Low Noise
0.9 A
=¥
|©)
-9
0.8 1
0.7
Medium Noise High Noise
1.0
PCA+MST
-==-PCA+SNO
PCA+ODP
09 4 |- LRR+MST
LRR+SNO
a LRR+ODP
E ~ = IsoConstraints
—+=NeuralGF 4
0.8 1 T Ours //’
0.7
1.0
0.9
(=¥
o
&
0.8 1
0.7

Threshold (degree)

Threshold (degree)

(a) FamousShape dataset

PGP

PGP

PGP

No Noise

Low Noise

High Noise

PCA+MST
-==-PCA+SNO
PCA+ODP

094 |- LRR+MST
LRR+SNO
LRR+ODP
- = IsoConstraints
——NeuralGF 7 7
0.8 1 b 4

Ours a2

Threshold (degree)

Threshold (degree)

(b) PCPNet dataset

Figure 1. Oriented normal PGP curves of unsupervised methods. The Y-axis indicates the percentage of good point normals with errors
below the angle thresholds specified on the X-axis. Our method achieves superior results across almost all thresholds.

point cloud data. Therefore, it will incur additional time
costs for users to directly start using the proposed method
for normal estimation. Future work will focus on addressing
this limitation by generalizing the method to handle unseen
data, enabling more convenient and broader applicability.
Potential directions for improving the generalization.
(1) Front-end feature extractor: mapping objects to a uni-
fied metric space using shape-specific features, enabling
fast adaptation to diverse geometries. (2) Meta-learning or
model-agnostic initialization: pretraining on a small corpus
of shapes to warm-start the network for unseen objects.
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Figure 2. Unoriented normal PGP curves of unsupervised methods on the FamousShape dataset. The Y-axis represents the percentage of
good point normals whose errors are below the angle thresholds specified on the X-axis. The scale of the Y-axis in (a) is different from that

in (b). Our method consistently outperforms others across all thresholds.
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Figure 3. Visual comparison of unoriented normals on real-world point clouds of the ScanNet dataset. Point colors indicate normal errors.
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Figure 4. Comparison with implicit representation methods for surface reconstruction. As the noise increases (from low to high), our
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Figure 6. Comparison with normal estimation methods and implicit representation methods for surface reconstruction on a wireframe
point cloud of doughnut. The reconstructed surfaces of normal estimation methods in the first row are generated using the Poisson surface
reconstruction algorithm [2]. The Neural-Pull [6], OSP [7], IF [5] and CAP-UDF [10] methods fail to generate surfaces.
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Figure 7. Visual comparison of point cloud denoising. Our method is unsupervised, whereas all baseline methods rely on supervised

training. The input consists of S0K-resolution shapes with 3% Gaussian noise from the PointCleanNet dataset. Point colors represent P2M
distance error (x10™%).

Figure 8. Visualization of point cloud denoising on real-world
point clouds of the Paris-rue-Madame dataset. We show the raw
data of a street scene in the first row, and compare the local details
of the scene before and after denoising using our method in the
last two rows.



	More Experimental Results
	Discussion
	Limitation

