MZEIT: Multi-Domain Mixture of Experts for Robust Neural Inertial Tracking

Supplementary Material

In this supplementary, we provide more details about
baselines and more experimental results, as well as the qual-
itative analyses.

1. Implementation Details

The number of layers for the temporal decomposition expert
and the frequency decomposition expert is set to 2. In the
cross-domain translation layer, the number of heads is set to
4. As for parameters within Mamba block, d_conv = 2 and
hidden dimension d_state = 16 on all datasets.

2. Baselines

Aside from our proposed M2EIT, we compare the proposed
MZ2EIT against the conventional baselines and up-to-date
deep models:

* PDR: We utilize a stepcounting algorithm [3] to detect
foot-steps and move the position along the device heading
direction by a predefined distance of 0.67m per step.

e RIDI: We employ the original implementation to train
distinct models for each device attachment in the RIDI
dataset. Conversely, for the remaining datasets, we train
a single model for each dataset independently, as the data
acquisition process involved mixed attachments [5].

* RoNIN-ResNet: RoNIN [1] provides two variants (i.e.
RoNIN-LSTM and RoNIN-ResNet) for regressing pla-
nar velocity from the IMU measurements, among which
RoNIN-ResNet performs best on the whole testset.

e TLIO: In our comparative experiments, we utilized only
the neural network components from the publicly avail-
able implementation, omitting the EKF module. This
configuration is denoted as TLIO (w/o EKF) in the sub-
sequent sections.

e IMUNet: This is an extended iteration of RONIN-ResNet,
enhanced with depth-wise and point-wise convolutions to
boost the model’s real-time performance. We also com-
pared M2EIT with the two variants (i.e. Mobilenet and
EfficientNet) introduced [6].

* ResMixer: Since the official code is not publicly
available, we developed our own implementation of
ResMixer [2], in which a five-layer mixer layer [4] is used
to replace the complex ResNet residual blocks, thereby
accelerating inertial odometry inference.

3. Ablation Study

Impact of Mixture of Experts. To gain the insights into
our four interaction cells, we conduct ablation studies in-
crementally. To be more specific, we compared our model

MZ2EIT with the following variants: 1) SDE: velocity re-
gression using only the spatial decomposition expert; 2)
joint representation of the spatial decomposition expert and
the temporal decomposition expert;3) our proposed M2EIT.

Table 1. The results on the impact of Mixture of Experts on the
IMUNet dataset.

SDE TDE FDE ATE RTE
v X X 3.14 3.27
v v X 2.71 2.83
v v v 2.18 2.50

Table 2. Comparison of different wavelet configurations in the
MZ2EIT framework on RIDI dataset.

Model ATE RTE
MZ?EIT + Haar 1.65 2.00
MZ2EIT + Daubechies 1.70 2.03
MZ2EIT + Coiflets 1.66 1.98

As shown in Table 1, progressively incorporating decou-
pled expert information leads to a steady decline in both
ATE and RTE. Notably, in terms of ATE, our approach
achieves a 30.6% and 19.6% improvement in localization
accuracy compared to SDE and SDE+TDE, respectively.
Meanwhile, as we can observe from Figure 2, when the
information from the three experts is fully integrated, the
generated trajectory becomes closer to the ground truth tra-
jectory. This underscores the critical role of multi-domain
information in enhancing inertial representation. Addition-
ally, in Figures 2 and 3, we present the trajectory visualiza-
tions of our method on various datasets.

Impact of Frequency Decompositions. Table 2 in-
cludes individual expert performance and comparisons with
additional frequency decompositions (Haar, Daubechies,
Coiflets).

Robustness analysis. Inertial sensors are susceptible to er-
rors, leading to tracking divergence. Therefore, robustness
analysis is essential. Based on this, we conduct a series of
experiments to observe the model’s performance under dif-
ferent noise levels(i.e. [0.01,0.05,0.1]). Figure | demon-
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Figure 1. Robustness analysis of M?EIT, SDE+TDE, and SDE on
the IMUNet dataset.

strates that the ATE and RTE of M2EIT increase gradually
as noise levels rise, whereas the ATE and RTE of SDE and
SDE+TDE escalate significantly, indicating their height-
ened sensitivity to noise. Evidently, incorporating more
domain-specific information enhances the model’s robust-
ness.
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(a) Trajectory visualization example of SDE.
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(b) Trajectory visualization example of SDE+TDE.
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Figure 2.

(c) Trajectory visualization example of M?EIT.

Trajectory visualization example of SDE, SDE+TDE, and M2EIT on the RIDI dataset.
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(a) Trajectory visualization example of SDE.

(b) Trajectory visualization example of SDE+TDE.

. (c) Trajectory visualization example of M?EIT.

Figure 3. Trajectory visualization example of SDE, SDE+TDE, and M2EIT on the RONIN dataset.
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