
Memory-Efficient 4-bit Preconditioned Stochastic Optimization

Supplementary Material

A. Practical 32-bit Shampoo
In this section, we provide the practical 32-bit Shampoo in-
troduced in Sec. 3.1 and summarize it in Algorithm 2.

Algorithm 2 Practical 32-bit Shampoo
Input: initial weight W0 → Rm→n, initial preconditioning
matrices L0 = ωIm, R0 = ωIn, L̂0 = Im, R̂0 = In. Total
update steps T , interval of updating preconditioners T1 and
T2, momentum parameter ε → (0, 1). First-order optimizer
F with initial optimizer state s0.
Output: final weight WT .

1: for k = 1, 2, . . . , T do
2: Compute gradient Gk = ↑Lk(Wk)
3: if k%T1 ↓ 0 then
4: L̄k = εLk↑1 + (1↔ ε)GkG

T

k

5: R̄k = εRk↑1 + (1↔ ε)GT

k
Gk

6: else
7: Lk = Lk↑1, Rk = Rk↑1

8: end if
9: if k%T2 ↓ 0 then

10: Compute maximum singular values ϑ
L

max and
ϑ
R

max of Lk and Rk by power iteration
11: Compute L̂k = (Lk+ϑ

L

maxωIm)↑1/4 and R̂k =
(Rk + ϑ

R

maxωIn)
↑1/4 by Schur-Newton iteration

12: else
13: L̂k = L̂k↑1; R̂k = R̂k↑1

14: end if
15: Ĝk = L̂kGkR̂k; G̃k = (↗Gk↗F /↗Ĝk↗F) · Ĝk

16: Wk, sk = F(Wk↑1, sk↑1, G̃k)
17: end for

B. Proofs in Theoretical Analysis
We vectorize the update scheme as follows. Starting with
the matrix form:

Wk+1 = Wk ↔ ϖkD(L̂k)GkD(R̂k),

and applying vectorization, we get:

Vec(Wk+1) = Vec(Wk)↔ϖk

(
D(R̂k)↘D(L̂k)

)
Vec(Gk).

Let xk := Vec(Wk), gk := Vec(Gk), and Hk := D(R̂k)↘
D(L̂k). we obtain the vectorized update scheme:

xk+1 = xk ↔ ϖkHkgk, (17)

where {Hk} is a sequence of positive definite matrices.

Proposition B.1. For a b-bit quantization and any vector
x → Rd, the following bound holds:

↗D(Q(x))↔ x↗↓ ≃
↗x↗↓
2b

.

Proof. Consider any real number a → [↔1, 1]. In a b-bit
quantization system, the interval between two consecutive
representable values is given by ! = 2

2b = 1
2b→1 . Thus, the

quantization error satisfies |Q(a)↔ a| ≃
!
2 = 1

2b .
For any vector x → Rd, we apply the definitions of the

operators Q and D as follows:

↗D(Q(x))↔ x↗↓

=

∥∥∥∥↗x↗↓ Q

(
x

↗x↗↓

)
↔ ↗x↗↓

x

↗x↗↓

∥∥∥∥
↓

= ↗x↗↓

∥∥∥∥Q
(

x

↗x↗↓

)
↔

x

↗x↗↓

∥∥∥∥
↓

≃↗x↗↓ ·
1

2b
.

This completes the proof.

Proposition B.2. For the 4-bit Shampoo in Algorithm 1,
let Mk := (D(C̄L

k
)D(C̄L

k
)T + ϑ

L

maxωIm)↑1/4, if
↗Mk↗o”,max ≃ CB , then its preconditioners hold that

D(L̂k) ⇐ Mk + CBnk2
↑b

I,

where ↗·↗o”,max is the maximal absolute value of all off-
diagonal entries and nk is the number of rows in Wk. Fur-
thermore, if for every row index i it holds that |[Mk]ii| >(
1 + 2

2b↑1

)∑
j ↔=i

|[Mk]ij |, then D(L̂k) ⇒ 0.

Proof. Unroll the update in Step 4, we have

Lk

=εLk↑1 + (1↔ ε)GkG
T

k

=ε(εLk↑2 + (1↔ ε)Gk↑1G
T

k↑1) + (1↔ ε)GkG
T

k

=ε
2
Lk↑2 + (1↔ ε)(GkG

T

k
+ εGk↑1G

T

k↑1)

...

=ε
k
L0 + (1↔ ε)

k↑1∑

i=0

ε
i
Gk↑iG

T

k↑i

=ε
k
L0 + (1↔ ε)

k↑1∑

i=0

ε
i
Gk↑iG

T

k↑i

⇑0.

Thus Step 11 is well-defined. Since only off-diagonal part
is quantized, by Step 6, we have

D(L̂k) =D(Q(Mk))

=D(Q(Sk ↔Diag(Mk))) + Diag(Mk)

=Mk ↔Diag(Mk) + Diag(Mk) + Ek

=Mk + Ek,

(18)

where Ek = (Mk↔Diag(Mk))↔D(Q(Mk↔Diag(Mk))).
By Proposition B.1, we have

↗Ek↗max

≃↗Mk ↔Diag(Mk)↗max 2
↑b

≃

∥∥∥(D(C̄L

k
)D(C̄L

k
)T + ϑ

L

maxωIm)↑1/4
∥∥∥
o”,max

2↑b

≃CB2
↑b

,

where ↗·↗max is the largest entry in magnitude of a matrix.
Note that for any x → Rd,

|x
T
Ekx| ≃ CB2

↑b(eT |x|)2 ≃ CBnk2
↑b

↗x↗
2
,

where e is the vector with all elements being 1 and | · | is the
operator of taking element-wise absolute value. Therefore,
we have

D(L̂k)

=(D(C̄L

k
)D(C̄L

k
)T + ϑ

L

maxωIm)↑1/4 + Ek,

⇐(D(C̄L

k
)D(C̄L

k
)T + ϑ

L

maxωIm)↑1/4 + CBnk2
↑b

I.

Moreover, if |[Mk]ii| >
(
1 + 2

2b↑1

)∑
j ↔=i

|[Mk]ij | for any
row index i, then by Eq. (18), we have

∣∣∣
[
D(L̂k)

]

ii

∣∣∣↔
∑

j ↔=i

∣∣∣
[
D(L̂k)

]

ij

∣∣∣

⇓(|[Mk]ii|↔ |[Ek]ii|)↔




∑

j ↔=i

|[Mk]ij |+
∑

j ↔=i

|[Ek]ij |





⇓(1↔ 2↑b)|[Mk]ii|+ (1 + 2↑b)
∑

j ↔=i

|[Mk]ij |

>0,

where the second inequality follows from Proposition B.1
and the last inequality follows from the strongly diago-
nal dominance. By Gershgorin Circle Theorem, we have
D(L̂k) ⇒ 0. This completes the proof.

Given a matrix S, the proof of Proposition B.2 shows
that if we quantize only the off-diagonal entries of S while
keeping the diagonal entries, the quantization error E sat-
isfies ↗E↗↓ ≃ 2↑b

↗S↗o”,↓. However, if the entire S is
quantized, the error becomes 2↑b

↗S↗↓. When the diago-
nal entries of S dominate each row, this selective quantiza-
tion method can significantly reduce the quantization error.

B.1. Smooth Nonconvex Training Loss
Theorem B.1. Suppose Assumption 5.1 holds. Let ϖk =

c↗
T+1

with c →

(
0, ωH,min

2L(1+ε2)ω2
H,max

)
, then we have

E
[
↗↑f(x̄T)↗

2
2

]
≃

2(f(x0)↔ f̄ + c
2
Lϱ

2
ϑ
2
H,max)

cϑH,min

⇔
T + 1

,

where x̄T is randomly selected from {x0, x1, ..., xT }, and
f̄ = minx↘Rd f(x).

Proof. Without any ambiguity, ↗·↗ denotes the L2 norm of
a vector or the spectral norm of a matrix. By Lipschitz
smoothness, we have

f(xk+1)

≃f(xk) + ↖↑f(xk), xk+1 ↔ xk↙+
L

2
↗xk+1 ↔ xk↗

2

=f(xk)↔ ϖk ↖↑f(xk), Hkgk↙+
Lϖ

2
k

2
↗Hkgk↗

2

≃f(xk)↔ ϖk ↖↑f(xk), Hkgk↙+ Lϖ
2
k
↗Hk↑f(xk)↗

2

+ Lϖ
2
k
↗Hk(↑f(xk)↔ gk)↗

2
.

Rearranging the terms and taking expectations, we get

ϖkE
[
↗↑f(xk)↗

2
Hk

]

≃E[f(xk)]↔ E[f(xk+1)] + Lϖ
2
k
E
[
↗Hk↑f(xk)↗

2
]

+ Lϱ
2
ϖ
2
k
↗Hk↗

2 (1 + ↗↑f(xk)↗
2).

By the choice of c, we have

1

2
ϖk ↗↑f(xk)↗

2
Hk

⇓Lϖ
2
k

(
↗Hk↑f(xk)↗

2 + ϱ
2
↗Hk↗

2
↗↑f(xk)↗

2
)
,

we have

∑
T

k=0 ϖkE
[
↗↑f(xk)↗

2
Hk

]

2
∑

T

k=0 ϖk

≃
f(x0)↔ f̄ + Lϱ

2
ϑ
2
H,max

∑
T

k=0 ϖ
2
k∑

T

k=0 ϖk

.

In particular, when ϖk = c↗
T+1

, we have

E
[
↗↑f(x̄k)↗

2
]
≃

2(f(x0)↔ f̄ + c
2
Lϱ

2
ϑ
2
H,max)

cϑH,min

⇔
T + 1

.

B.2. Nonsmooth Nonconvex Training Loss
Conventional techniques in stochastic optimization for non-
smooth nonconvex scenarios typically rely on the time-
homogeneity of the associated dynamical system, as shown
in [4, 13]. Given a locally Lipschitz function f , by
Rademacher’s theorem, f is differentiable almost every-
where. Thus, we have the following definition of subdif-
ferential for a locally Lipschitz function.

Definition B.1. The Clark subdifferential or subgradient
[9] is defined as

ςf(x) :=

{
y : xk ∝ x, ↑f(xk) ∝ y,

where f is differentiable at xk


.

The class of locally Lipschitz functions is too broad
for a meaningful convergence analysis: there even ex-
ist highly pathological examples whose subgradient tra-
jectories fail to converge to any critical point [12]. In
contrast, neural-network losses exhibit a much richer, but
still well-structured nonsmooth geometry: they are in fact
“piecewise-smooth” because their non-differentiabilities
arise only from simple components (e.g. ReLU activations).
A convenient formalism for capturing this structure is that
of Whitney stratifiable functions, which we adopt through-
out.

Definition B.2. A locally Lipschitz function is Cp-Whitney
stratifiable [13], if the graph of f : graph(f) := {(x, t) :
f(x) = t} can be decomposed into finite C

p manifolds,
called strata, satisfying
1. For any two strata M1 and M2, the following implica-

tion holds:

M1 ′M2 ∞= ∈ =∋ M1 △ M2

2. For any sequence of points zk in a stratum M1 converg-
ing to a point z̄ in a stratum M2, if the corresponding
normal vectors vk → NM1(zk) converge to a vector v,
then the inclusion v → NM2(z̄) holds. Here NMi

is the
normal space of Mi.

For instance, consider the function x ▽∝ ↔|x|, which
is C

↓-Whitney stratifiable: its graph decomposes into the
smooth submanifolds

{(0, 0)}, {(t,↔t) : t > 0}, and {(t, t) : t < 0}.

Moreover, it has been shown that the loss functions of virtu-
ally all modern neural networks admit a Whitney stratifica-
tion [5]. Consequently, we restrict our convergence analysis
to Whitney stratifiable functions. The key step is to prove
that the continuous-time limit of the piecewise-linear inter-
polation

x(t) = xk +
t↔ tk↑1

ϖk
(xk+1 ↔ xk), t → [tk↑1, tk),

is a solution to the subgradient differential inclusion, where
tk =

∑
k

i=1 ϖi, t0 = 0. The Whitney stratification
then allows us to transfer the nonsmooth analysis onto
each smooth stratum by exploiting their topological and
geometric regularity (Definition B.2). Such stratification-
based methods have been widely employed to establish con-
vergence guarantees for contemporary deep-learning algo-
rithms in nonsmooth settings [5, 13, 55].

Theorem B.2. Suppose Assumption 5.2 holds, and assume
the sequence {xk} remains within a compact set. If the
learning rate satisfies

∑↓
k=1 ϖk = ̸ and

∑↓
k=1 ϖ

2
k
< ̸,

then
lim
k≃↓

dist(xk,”) = 0,

where ” := {x : 0 → ςf(x)} is the set of stationary points.

Proof. Define the interpolated process x(t) for {xk} as fol-
lows:

x(t) := xk +
t↔ tk↑1

ϖk
(xk+1 ↔ xk), for t → [tk↑1, tk),

where tk := ϖ1 + · · · + ϖk, t0 = 0. Define y(t) := Hkdk

for t → [tk↑1, tk), where dk → ςf(xk). Thus, both x(t) and
y(t) are piecewise linear functions. We also define time-
shifted versions yt(·) := y(t+ ·).

Let xt(·) denote the solution to the following ODE:

ẋt(φ) = ↔y(φ), xt(t) = x(t), for any φ ⇓ t.

By Assumption 5.2, sup
k
↗dk↗ ≃ ↼, so sup

t⇐0 ↗y(t)↗ ≃

M↼. Therefore, the class of functions {xt(·) : t ⇓ 0} is
uniformly equicontinuous. Using the assumptions on {↽k},
the learning rate {ϖk}, and the boundedness of Hk, it fol-
lows from [18, Lemma A.1] that for any T > 0,

lim
t≃↓

sup
ϑ↘[t,t+T]

↗x(φ)↔ xt(φ)↗ = 0.

Since x(·) is pointwise bounded, xt(·) is also pointwise
bounded. By the Arzelà-Ascoli theorem, the equicontinuity
of {xt(·) : t ⇓ 0} implies that it is relatively compact in
the space of continuous functions, under the topology of
uniform convergence over any compact set. The relative
compactness of {yt(·)} can be similarly verified; see [4, 6]
for further details on related functional analysis concepts.

For any fixed T > 0, by the definition of xt(·), we have

xt(t+ T) = xt(t)↔


T

0
y
t(s) ds.

Now, select a subsequence {tkj
} such that the sequences

{xt(·)} and {y
t(·)} converge to x̄(·) and ȳ(·), respectively,

as j ∝ ̸. Letting j ∝ ̸, we obtain

x̄(T) = x̄(0)↔


T

0
ȳ(s) ds.

Next, we show that ȳ(s) → H̄ςf(x̄(s)). Note that

dist

ȳ(s), H̄ςf(x̄(s))



≃

∥∥∥∥∥∥
1

N

N∑

j=1

y
tkj (s)↔ ȳ(s)

∥∥∥∥∥∥

+ dist



 1

N

N∑

j=1

y
tkj (s), H̄ςf(x̄(s))





≃dist



 1

N

N∑

j=1

Hω(tkj
+s)dω(tkj

+s), H̄ςf(x̄(s))



+ o(1),

where ϑ(t) = k such that tk < t ≃ tk+1. Since dω(tkj
+s) →

ςf(xω(tkj
+s)), by the outer-semicontinuity of ςf , we have

dist
(
dω(tkj

+s), ςf(x̄(s))
)
∝ 0. Using Assumption 5.2c),

we have
dist


ȳ(s), H̄ςf(x̄(s))



≃dist



 1

N

N∑

j=1

Hω(tkj
+s)dω(tkj

+s), H̄ςf(x̄(s))



+ o(1)

∝ 0.

Thus, we conclude the following:

x̄(T) = x̄(0)↔


T

0
ȳ(s) ds, and ȳ(s) → H̄ςf(x̄(s)).

(19)
Since f is stratifiable, by [13, Theorem 3.2], any limit point
of {xk} converges to the stable set of (19), namely, {x :
0 → H̄ςf(x)} = {x : 0 → ςf(x)} = ”. This completes
the proof.

C. Experimental Details
C.1. Toy Example
Here we compare Cholesky quantization (CQ) and vanilla
quantization (VQ) on a toy 2× 2 matrix using 4-bit linear-2
quantization as introduced in Sec. 3.2. The original ma-
trix, with eigenvalues (10.908, 0.092), has a high condition
number. VQ perturbs matrix elements, distorting the spec-
trum and producing a negative eigenvalue ↔0.164, break-
ing PD. In contrast, CQ quantizes the Cholesky factor, pre-
serving structure and yielding eigenvalues (11.310, 0.109),
closer to the original. This shows CQ is more robust for ill-
conditioned matrices, mitigating instability and preserving
spectral properties better than VQ.

C.2. Matrix Distance
For the Frobenius norm relative error (NRE) and angle error
(AE) in Tab. 1, we report the cumulative errors over all pre-
conditioners. For synthetic matrices, we randomly gener-
ate 100 instances of A via spectral decomposition to assess

Table 10. Comparison of VQ versus CQ on a toy 2→ 2 matrix L.

Method Original VQ CQ

L
[
10.00 3.00
3.00 1.00

] [
10.00 3.60
3.60 1.11

] [
10.00 3.60
3.60 1.42

]

Eigenvalues (10.908, 0.092) (11.275,↑0.164) (11.310, 0.109)

quantization robustness. Specifically, we construct A as:
A = U#U⇒

,

where U is a randomly sampled orthogonal matrix obtained
via QR decomposition of a Gaussian random matrix, and #
is a diagonal matrix with eigenvalues geometrically spaced
from 10↑3 to 103. This setup ensures a high dynamic range,
making small values more susceptible to quantization er-
rors, which are further amplified during inverse 1/4-th root
computations.

Additionally, we evaluate NRE and AE on precondi-
tioners from 32-bit Shampoo training of Swin-Tiny on
CIFAR-100. The results, summarized in Tab. 11, show that
Cholesky quantization consistently reduces both NRE and
AE compared to vanilla quantization, demonstrating its ef-
fectiveness in preserving spectral properties.

Table 11. NRE and AE on preconditioners of Swin-Tiny for
vanilla quantization (VQ) and Cholesky quantization (CQ).

Preconditioner VQ CQ
NRE AE NRE AE

Epoch 25 36.669 29.669 9.381 9.344
Epoch 50 36.853 29.269 8.803 8.775
Epoch 75 39.494 30.686 8.814 8.804
Epoch 100 41.068 30.848 8.943 8.918

C.3. Training Hyperparameters
For the first-order base optimizers SGDM and AdamW used
in Shampoo, we maintain their optimizer states at the same
precision as the model parameters, which is float32 for im-
age classification and bfloat16 for LLM pre-training.

For SGDM, we set the initial learning rate to 0.1, the
momentum parameter to 0.9, and the weight decay coeffi-
cient to 5 × 10↑4 for training CNNs on CIFAR-100 and
Tiny-ImageNet, and 1 × 10↑4 for training ResNet-50 on
ImageNet. For AdamW, we set the initial learning rate
to 1 × 10↑3, the momentum parameters to ε1 = 0.9 and
ε2 = 0.999, the small positive constant for the denominator
to 1 × 10↑8, and the weight decay to 5 × 10↑2 for image
classification and 0 for LLM pre-training.

For quantization settings, we employ block-wise linear-
2 quantization as introduced in Sec. 3.2, with a block size
of B × B = 64 × 64. For tensors with fewer than 4096
elements, quantization is not applied.

For both 32-bit and 4-bit Shampoo, we set the small pos-
itive constant ω = 1 × 10↑6 and the preconditioner mo-

Table 12. Hyperparameters of LLaMA models for evaluation.
Data amount are specified in tokens.

Params Hidden Intermediate Heads Layers

130M 768 2048 12 12
350M 1024 2736 16 24
1 B 2048 5461 24 32

mentum parameter ε = 0.95. The error state momentum
parameter is set to εe = 0.95 to align with the precon-
ditioner update. For update intervals, we use T1 = 100
and T2 = 500 for experiments on CIFAR-100 and Tiny-
ImageNet, T1 = 200 and T2 = 1000 for training ResNet-
50 on ImageNet, and T1 = T2 = 200 for LLM pre-training.
Additionally, Shampoo applies layer-wise preconditioning
to blocks derived from large matrices, with the maximum
order of the preconditioner set to 1200.

For image classification tasks, we use the traditional
cross-entropy loss as the training loss. For the learning
rate schedule, we employ cosine annealing with 5 epochs
of linear warmup across all experiments. For data aug-
mentation, we apply horizontal flip, random crop, and
color jitter for VGG and ResNet [23, 28], and Mixup
[62], CutMix [61], RandomErasing [65], and RandAug-
ment/AutoAugment [10, 11] for Swin and ViT [31, 34].

The batch size is set to 128 for experiments on CIFAR-
100 and Tiny-ImageNet, 256 for training ResNet-50 on Im-
ageNet, and 512 for training ViT-Base on ImageNet. For
the total training epochs, we follow [23, 58] and train Sham-
poo with SGDM as the base optimizer for 200 epochs when
training CNNs on CIFAR-100, while SGDM itself is trained
for 300 epochs on CIFAR-100. For training CNNs on Tiny-
ImageNet and ViTs on CIFAR-100 and Tiny-ImageNet,
we follow [31, 34] and train Shampoo with the base op-
timizer for 100 epochs, and the base optimizer itself for
150 epochs. For training ResNet-50 on ImageNet, we train
Shampoo with SGDM as the base optimizer for 100 epochs
and SGDM for 120 epochs. For training ViT-Base on Im-
ageNet, we train Shampoo with AdamW as the base opti-
mizer for 120 epochs and AdamW for 150 epochs.

For LLM pre-training, we follow the model settings of
[33, 64], with details provided in Tab. 12. All experiments
use bfloat16 to reduce memory usage. Due to limited com-
putational resources, we shorten training and run 10K steps
for LLaMA-130M and LLaMA-350M, and 2K steps for
LLaMA-1B. The total effective batch size per training step
is 512 with gradient accumulation. The per-iteration batch
size is set to 256 for LLaMA-130M, 128 for and LLaMA-
350M, and 64 for LLaMA-1B.

C.4. Memory Efficiency
In our experiments, we report the peak GPU memory us-
age instead of the memory used solely by the optimizers,

as the peak GPU memory usage is the primary constraint
when training large-scale models in practice and is there-
fore our main concern. Furthermore, from the total peak
GPU memory usage, we can deduce the additional memory
cost introduced by the preconditioners of Shampoo on top
of the base optimizers.

For instance, when training ResNet-34 on CIFAR-100,
the base optimizer SGDM incurs a peak memory usage
of 1254.7 MB. The additional peak GPU memory usage
caused by storing the 32-bit preconditioners of Shampoo
(Lk, Rk, L

↑1/4
k

, R
↑1/4
k

) is calculated as the peak memory
usage of 32-bit Shampoo minus 1254.7 MB, which equals
627.9 MB. With vanilla 4-bit quantization for the precon-
ditioners, this additional memory usage drops to 86.3 MB,
which is less than 1/7 of the additional memory required
by 32-bit Shampoo. Furthermore, when using 4-bit Sham-
poo with Cholesky quantization, the additional peak mem-
ory usage decreases further to 64.8 MB.

We now provide a brief analysis of why the in-
creased peak memory usage of 4-bit Shampoo with
Cholesky quantization (e.g., 64.8 MB) is approximately
75% of that of vanilla 4-bit Shampoo (e.g., 86.3 MB).
Vanilla 4-bit Shampoo stores the 4-bit preconditioners
(Lk, Rk, L

↑1/4
k

, R
↑1/4
k

), as introduced in Sec. 4.1, which
consist of four full matrices of the same shape in 4-
bit precision. In contrast, 4-bit Shampoo with Cholesky
quantization stores (CL

k
, C

R

k
, L

↑1/4
k

, R
↑1/4
k

) as described
in Sec. 4.2, where C

L

k
and C

R

k
are the lower triangular

Cholesky factors of Lk and Rk, respectively. The storage
of CL

k
and C

R

k
requires only half the space of Lk and Rk,

leading to the total storage cost of the preconditioners for
4-bit Shampoo with Cholesky quantization being approxi-
mately 75% of that of vanilla 4-bit Shampoo.

For L↑1/4
k

and R
↑1/4
k

, Cholesky quantization is not ap-
plied, as they are used to precondition stochastic gradients
at each iteration, as described in Algorithm 2 and Algo-
rithm 1. Restoring them from their Cholesky factors at each
iteration would be computationally expensive.

Moreover, to analyze accuracy-memory trade-off, we ex-
periment with varying preconditioner precisions on CIFAR-
100. Results below show that 4-bit achieves a good balance,
maintaining accuracy close to higher precision with signifi-
cantly lower memory usage.

Table 13. Test accuracy (%) and peak GPU memory (MB) on
CIFAR-100 with different preconditioner precisions.

Model Base 4-bit 8-bit 32-bit
Metric Acc. Mem. Acc. Mem. Acc. Mem. Acc. Mem.
VGG 74.43 597.3 75.21 662.2 75.63 727.1 75.02 1065.2
ResNet 79.12 1254.7 80.52 1341.0 80.67 1435.4 80.69 1882.6

	Introduction
	Related Work
	Preliminaries
	Practical Shampoo
	Linear Square Quantization for Compression

	Memory-Efficient Shampoo Via Compensated Cholesky Quantization
	Quantization for Shampoo Compression
	Efficient and Stable Cholesky Quantization
	Compensated Cholesky Quantization

	Theoretical Analysis
	Smooth Nonconvex Training Loss
	Nonsmooth Nonconvex Training Loss

	Experiments
	Test Performance
	Memory and Computational Efficiency
	Ablation Study

	Conclusion
	Practical 32-bit Shampoo
	Proofs in Theoretical Analysis
	Smooth Nonconvex Training Loss
	Nonsmooth Nonconvex Training Loss

	Experimental Details
	Toy Example
	Matrix Distance
	Training Hyperparameters
	Memory Efficiency

