
Met2Net: A Decoupled Two-Stage Spatio-Temporal Forecasting Model for
Complex Meteorological Systems

Supplementary Material

Algorithm 1 Pseudocode of Implicit Two-Stage Process in
a PyTorch-like Style Integrated Within a Inference Pipeline.

E1, E2: encoders.
D1, D2: decoders.
H: translator.

for x in loader: # load a minibatch x with N samples
x1, x2 = slice(x) # Slicing Operations in Python
z1_x = E1(x1) # Independent encoding of Variables
z2_x = E2(x2)
z_x = torch.stack(z1_x,z2_x)

Spatio-Temporal learnning and variable fusion
z_y = H(z_x)

z1_y, z2_y = slice(z_y)
y1 = D1(z1_y) # Independent decoding of Variables
y2 = D2(z2_y)
y_pre = torch.stack(y1, y2)

6. Appendix

6.1. Experimental Setup for Variable Distributions

Data Distributions. The experiment utilized the 2018
T2M (2-meter air temperature) and TCC (Total Cloud
Cover) data from the WeatherBench dataset to analyze spa-
tial and temporal distribution patterns. The data were nor-
malized to the range [0, 1] for comparability. Spatial analy-
sis was based on grid data from a single time step to capture
geographic variability, while temporal analysis focused on
the time series data of a single grid point.

First-Order Differences. The experiment analyzed first-
order differences of 2018 T2M and TCC data from the
WeatherBench dataset. Temporal differences were calcu-
lated between steps, and spatial differences from adjacent
grid points along the h and w dimensions. Differences were
standardized to zero mean and unit variance, with outliers
exceeding three standard deviations removed.

6.2. Pseudocode of Inference Pipeline

In Algorithm 1, we present the pseudocode of our method
within a inference pipeline. For simplicity, we demonstrate
the case with only two variables.

6.3. Pseudocode of Trainning Pipeline

In Algorithm 2, we present the pseudocode of our method
within a training pipeline. For simplicity, we demonstrate
the case with only two variables.

Algorithm 2 Pseudocode of Implicit Two-Stage Process in
a PyTorch-like Style Integrated Within a Training Pipeline.

E1, E2, E1_m, E2_m: encoder that applies gradient
updates and momentum updates to two different
variables.

D1, D2, D1_m, D2_m: decoder that applies gradient
updates and momentum updates to two different
variables.

H, H_m: translator that gradient updates and
momentum updates.

a: momentum

E1_m.params = E1.params # initialize
E2_m.params = E2.params # initialize
D1_m.params = D1.params # initialize
D2_m.params = D2.params # initialize
H_m.params = H.params # initialize

for x,y in loader: # load a minibatch x,y with N
samples

stage 1
x1, x2 = slice(x) # Slicing Operations in Python
z1_x = E1(x1) # Independent encoding of Variables
z2_x = E2(x2)
z_x = torch.stack(z1_x,z2_x)

Spatio-Temporal learnning and variable fusion
z_y = H_m(z_x)

z1_y, z2_y = slice(z_y)
y1 = D1(z1_y) # Independent decoding of Variables
y2 = D2(z2_y)
y_rec = torch.stack(y1, y2)

momentum update
E1_m.params = a*E1_m.params +(1-a)*E1.params
E2_m.params = a*E2_m.params +(1-a)*E2.params
D1_m.params = a*D1_m.params +(1-a)*D1.params
D2_m.params = a*D2_m.params +(1-a)*D2.params

loss_rec = MSE(y_rec,y)

stage 2
x1, x2 = slice(x) # Slicing Operations in Python
z1_x = E1_m(x1) # use momentum updates module
z2_x = E2_m(x2)
z_x = torch.stack(z1_x, z2_x)

Spatio-Temporal learnning and variable fusion
z_y_pre = H(z_x)

z1_y, z2_y = slice(z_y)
y1 = D1_m(z1_y)
y2 = D2_m(z2_y)
y_pre= torch.stack(y1, y2)

y1, y2 = slice(y)
z1_y = E1_m(y1) # use momentum updates module
z2_y = E2_m(y2)
z_y = torch.stack(z1_y, z2_y)

momentum update
H_m.params = a*H_m.params +(1-a)*H.params

loss_pre = MSE(z_y_pre,z_y)

loss = loss_rec + loss_pre

Adam update: query network
loss.backward()

6.4. Impact of different blocks in translator

We tested different blocks within the Translator of our
framework, as shown in Table 9. The results indicate
that while the TAU block remains a competitive choice,
our method consistently outperforms the baseline methods
across all tested blocks. This demonstrates the robustness
of our framework in handling various blocks. Regardless of
the block selected, our method maintains superior perfor-
mance, validating the effectiveness of the proposed frame-
work across different configurations.

Table 9. Impact of using different Blocks in the translator on T2M
and TCC prediction performance. The light gray background in-
dicates results not applied in our framework. The white back-
ground indicates results obtained using different translators within
our framework.

Method T2M TCC
MSE MAE RMSE MSE MAE RMSE

HorNet 1.2010 0.6906 1.0960 0.0469 0.1475 0.2166
TAU 1.1620 0.6707 1.0780 0.0472 0.1460 0.2173
Wast 1.0980 0.6338 1.0440 - 0.1452 0.2150

ConvNext 1.0238 0.6598 1.0105 0.0440 0.1426 0.2096
SimVPv2 0.9215 0.6148 0.9588 0.0425 0.1367 0.2061
PoolFormer 0.9493 0.6271 0.9730 0.0435 0.1426 0.2085
Hornet 0.8778 0.5987 0.9358 0.0423 0.1388 0.2055
Moga 1.0314 0.6643 1.0141 0.0445 0.1455 0.2109
TAU 0.8271 0.5770 0.9094 0.0422 0.1370 0.2054

6.5. Performance evolves with time steps.

As shown in Figure 7, the performance of both models
(TAU and our method) varies with the prediction time steps
for different variables (T2M and TCC). Although the per-
formance of both models declines as the time step in-
creases, our method consistently outperforms TAU, exhibit-
ing slower growth in MSE and more stable PCC.

2 4 6 8 10 12
Prediction Time Step

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
SE

TAU
Our

(a) T2M on MSE.

2 4 6 8 10 12
Prediction Time Step

0.9980

0.9985

0.9990

0.9995

PC
C

TAU
Our

(b) T2M on PCC.

2 4 6 8 10 12
Prediction Time Step

0.01

0.02

0.03

0.04

0.05

0.06

M
SE

TAU
Our

(c) TCC on MSE.

2 4 6 8 10 12
Prediction Time Step

0.70

0.75

0.80

0.85

0.90

0.95

PC
C

TAU
Our

(d) TCC on PCC.

Figure 7. Performance comparison of T2M and TCC prediction
using MSE and PCC across different prediction time steps.

6.6. Single meteorological variables prediction
To validate the applicability and effectiveness of our
method, we conducted single-variable prediction experi-
ments. Table 10 presents quantitative comparison results
for UV10 and T2M, showing that our method outperforms
existing models across all key metrics. Although single-
variable accuracy is lower than multi-variable predictions
(Table 1), this highlights the effectiveness of our multi-
variable fusion approach and the importance of considering
multiple variables in meteorological forecasting.

Table 10. Quantitative comparison on the UV10 and T2M vari-
ables. The subscript S in Baselines indicates the single-variable
model.

Method UV10 T2M
MAE RMSE MAE RMSE

ConvLSTM 0.9215 1.3775 0.7949 1.2330
PredRNN++ 0.9019 1.3685 0.7866 1.2070
SimVP 0.9510 1.4091 0.7037 1.1130
ConvNeXt 0.8698 1.3006 0.7220 1.1300
TAU 0.8426 1.2619 0.6607 1.0780
Met2NetS 0.8197 1.2518 0.6536 1.0753

6.7. Additional metrics and resource comparison
We report both the anomaly correlation coefficient (ACC)
and the resource consumption of different models on the
cropped ERA5 dataset, as presented in Table 11. All ex-
periments are conducted under the same setting with fp32
precision and batch size 16 on a single NVIDIA RTX 4090
GPU.

Met2Net achieves the highest forecasting accuracy
across all variables while maintaining moderate parameter
count and competitive efficiency in terms of computation
and memory usage.

Table 11. ACC and resource comparison on cropped ERA5.
Method Params FLOPs Mem Time MSL U10 V10 T2M

(M) (G) (MiB) (Min) ACC

ConvLSTM 7.44 135.0 4398 2:42 0.9671 0.9073 0.9427 0.9293
MogaNet 12.83 18.9 14408 1:37 0.9690 0.9181 0.9492 0.9533
TAU 12.29 18.3 11942 1:21 0.9652 0.9097 0.9432 0.9510
Met2Net 8.90 119.0 23078 2:24 0.9803 0.9340 0.9590 0.9711

Note: All experiments were conducted on a single NVIDIA RTX 4090
GPU. Mem indicates the peak GPU memory usage with fp32 and a batch
size of 16; Time refers to the training time per epoch.

6.8. Scalability under increased variable input
To evaluate the scalability of the proposed method, we ex-
pand the number of input meteorological variables in the
WeatherL setting by introducing three additional physical
fields: total precipitation (TP), geopotential height (Z), and
top-of-atmosphere incoming shortwave radiation (TISR).
Correspondingly, we increase the encoder–decoder pairs

from 4 to 8, while maintaining the same translator architec-
ture. We compare the forecasting performance of TAU and
Met2Net under varying numbers of encoder–decoder pairs.
The results are summarized in Table 12.

Table 12. Forecasting performance with increased variables
(UV10 and TCC) under different encoder–decoder configurations.

Method # P UV10 TCC
(M) MSE RMSE MSE RMSE

TAU1 12.2 1.5925 1.2619 0.0472 0.2173
Met2Net4 8.7 1.5055 1.2270 0.0422 0.2054
TAU8 12.2 1.7345 1.3161 0.0444 0.2107
Met2Net8 8.9 1.4740 1.2129 0.0417 0.2043

The results show that Met2Net maintains superior fore-
casting accuracy while scaling to more variables, with only
a marginal increase in parameter count (from 8.65M to
8.87M). In contrast, TAU exhibits a performance drop de-
spite using the same number of encoders. This demon-
strates that Met2Net is well-suited for scalable spatiotem-
poral modeling in multi-variable settings.

6.9. Cross-Variable Attention Analysis

To better understand the inter-variable dependencies cap-
tured by the translator module, we analyze the cross-
variable attention weights learned during the forecasting
process. In our model, each meteorological variable is en-
coded independently as a token, and the translator performs
self-attention over these variable tokens to enable dynamic
information aggregation. Figure 8 presents the averaged at-
tention map across all samples and heads. Each row repre-
sents the target variable being predicted, and each column
indicates the source variable being attended to. The values
are normalized attention weights, reflecting how much each
variable contributes to the others.

MSL U10 V10 T2M

M
SL

U1
0

V1
0

T2
M

0.37 0.50 0.12 0.01

0.03 0.75 0.13 0.10

0.37 0.37 0.25 0.00

0.25 0.49 0.12 0.14
0.0

0.2

0.4

0.6

0.8

1.0

Figure 8. Cross-variable attention map extracted from the transla-
tor module. Brighter colors indicate stronger attention. Variables
include: MSL, U10, V10, T2M, TP, Z, TISR, and TCC.

The attention map reveals several meaningful patterns.
For example, the model places strong attention between
U10 and V10, and between T2M and TCC, which are physi-
cally correlated. This indicates that the translator can adap-
tively capture variable-specific influences, enhancing both
forecasting performance and model interpretability.

6.10. Additional tracking tropical cyclones

115°E

115°E

120°E

120°E

125°E

125°E

130°E

130°E

135°E

135°E

140°E

140°E

17°N 17°N

22°N 22°N

27°N 27°N

32°N 32°N

37°N 37°N

42°N 42°NTruth
TAU
Ours

(a) Predicted and ground truth tracks
of Typhoon MAWAR (1-Hour lead
time).

115°E

115°E

120°E

120°E

125°E

125°E

130°E

130°E

135°E

135°E

140°E

140°E

17°N 17°N

22°N 22°N

27°N 27°N

32°N 32°N

37°N 37°N

42°N 42°NTruth
TAU
Ours

(b) Predicted and ground truth tracks
of Typhoon DOKSURI (3-Hour lead
time).

Figure 9. Tracking tropical cyclones.

6.11. Additional visualization results

(a) t=1. (b) t=12.

Figure 10. Visualization of prediction results for different lead times. (a) Results at a forecast time of 1 hour. The background in white
represents the absolute error (| GT-Prediction |) for each model. (b) Results at a forecast time of 12 hours.

(a) t=1. (b) t=12.

Figure 11. Visualization of prediction results for different lead times. (a) Results at a forecast time of 1 hour. The background in white
represents the absolute error (| GT-Prediction |) for each model. (b) Results at a forecast time of 12 hours.

(a) t=1. (b) t=12.

Figure 12. Visualization of prediction results for different lead times. (a) Results at a forecast time of 1 hour. The background in white
represents the absolute error (| GT-Prediction |) for each model. (b) Results at a forecast time of 12 hours.

(a) t=1. (b) t=12.

Figure 13. Visualization of prediction results for different lead times. (a) Results at a forecast time of 1 hour. The background in white
represents the absolute error (| GT-Prediction |) for each model. (b) Results at a forecast time of 12 hours.

(a) t=1. (b) t=10.

Figure 14. Visualization of prediction results for different lead times on the Mv Mmfnist dataset. The last two columns represent the
absolute error (| GT - Prediction |) for each model. (a) Results at a forecast time of 1 frame. (b) Results at a forecast time of 10 frame.

(a) t=1. (b) t=10.

Figure 15. Visualization of prediction results for different lead times on the Mv Mmfnist dataset. The last two columns represent the
absolute error (| GT - Prediction |) for each model. (a) Results at a forecast time of 1 frame. (b) Results at a forecast time of 10 frame.

(a) t=1. (b) t=10.

Figure 16. Visualization of prediction results for different lead times on the Mv Mmfnist dataset. The last two columns represent the
absolute error (| GT - Prediction |) for each model. (a) Results at a forecast time of 1 frame. (b) Results at a forecast time of 10 frame.

