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The supplementary is organized as follows.
Supp. A: Details of metalens:
• metalens imaging,
• metalens fabrication,
• chromatic aberration,
• existing physical and algorithmic solutions.
Supp. B: Optical simulation details of:
• spatial optical prior,
• channel optical prior.
Supp. C: Experiments including:
• real scene generalization
• data scaling-up,
• cross-metalens generalization,
• model efficiency,
• dataset analysis,
• extensive qualitative analysis.
Supp. D: Discussions and clarifications about:
• dataset setup,
• physically suitable for endoscopy,
• related works,
• mathematical proofs,
• ethical clarification.

A. Delving into Metalens

Traditional convex lenses focus light by varying the thick-
ness from the center to the edge, altering the optical path
length of incoming light. However, this design inherently
causes spherical and chromatic aberrations. Chromatic
aberration is further divided into axial chromatic aberra-
tion (ACA) and lateral chromatic aberration (LCA). ACA
involves variations in focal length along the optical (z) axis
for different wavelengths. LCA results in the positional dis-
placement of focused colors in the transverse (x-y) plane on
the focal plane. Conventional convex lenses employ multi-
ple lens elements arranged in groups to mitigate these aber-
rations, often leading to bulky optical systems.

Differently, metalenses [15] (published in Science, 2016)
represent a novel class of lenses that are ultra-lightweight
and free from bulky designs. These lenses comprise nu-
merous sub-wavelength structures (scale elements within
the visible spectrum) meticulously arranged on a planar sur-
face. Each nanostructure can independently manipulate the
phase of the transmitted light wave, allowing for precise
deformation of the wavefront and achieving accurate fo-
cusing. By programming a target hyperbolic phase profile
that inherently satisfies the Abbe sine condition, metalenses
can theoretically eliminate spherical aberration at the de-
sign stage. Combined with their sub-micron thickness and

Figure 1. Design of meta-atoms. The phase and transmission in-
tensity of the GaN nanopillars.

planar form factor, this paradigm shift allows metalenses to
achieve high-performance focusing without the bulk of tra-
ditional optics, offering transformative potential for minia-
turized imaging systems and photonic integration.

A.1. Metalens Design and Fabrication
However, optimizing the achromatic aberration of metal-
enses remains challenging in meta-optics. The focusing
phase of a metalens for a specific working wavelength λ
is determined by the following equation:

ϕ(r, λ) = −2π

λ

(√
r2 + f2 − f

)
, λ ∈ [λmin, λmax]

(1)
where ϕ(r, λ) represents the required focusing phase at po-
sition r for the wavelength λ, and f denotes the desired
focal length. In this study, the metalens, with a diameter of
2.6 mm, is designed to achieve a focal length of 10 mm at a
wavelength of 532 nm.

Fig. 1 shows the employed polarization-independent
meta-atoms, comprising cylindrical gallium nitride (GaN)
nanopillars on a sapphire substrate. Each meta-atom fea-
tures a fixed height of 850 nm and a unit-cell periodicity of
280 nm. The parametric variation of the nanopillar diame-
ters (100–185 nm) enables full 2π-phase coverage for wave-
front focusing. The data of phase shift and transmission in-
tensity are derived from numerical simulation with the com-
mercial software COMSOL Multiphysics©. As shown in
Eq. 1, different meta-atoms are arranged at corresponding
locations according to the focusing phase profile.

In Fig. 2, the metalens is manufactured through a multi-
step lithographic patterning and dry etching workflow. The



Figure 2. Fabrication flow chart of the metalens.

process begins with an ultrasmooth c-plane sapphire sub-
strate coated with an 850 nm GaN epitaxial layer grown via
metalorganic chemical vapor deposition (MOCVD). A 200
nm silicon dioxide (SiO2) film, serving as an etch-resistant
hard mask, is thermally evaporated onto the GaN sur-
face. To pattern the metasurface, a polymethyl methacry-
late (PMMA) photoresist layer (200 nm thick) is deposited
via spin coating, followed by a 180°C soft bake for 3
minutes. High-resolution electron-beam lithography (ELS-
HS50, ELIONIX INC.) directly writes the metalens de-
sign into the PMMA layer. Post-exposure development
involves immersing the substrate in a methyl isobutyl ke-
tone/isopropyl alcohol (MIBK: IPA = 1:3) solution for 75
seconds, followed by an IPA rinse (20 seconds) to termi-
nate the reaction. A 40 nm chromium (Cr) film is subse-
quently evaporated onto the patterned resist, and lift-off in
acetone selectively removes excess Cr to define the mask
geometry. This Cr stencil guides the first inductively cou-
pled plasma reactive ion etching (ICP-RIE) step using CF4

plasma (Samco RIE-200iPT) to transfer the pattern into the
underlying SiO2 layer. Residual Cr is stripped via wet etch-
ing, exposing the SiO2 hard mask. The final nanostructur-
ing involves a second ICP-RIE cycle with a Cl2/Ar plasma
to anisotropically etch the GaN layer, resulting in high-
aspect-ratio nanopillars. Buffered oxide etch (BOE) solu-
tion removes the remaining SiO2 mask, leaving an array of
precisely defined GaN nanostructures anchored to the sap-
phire substrate.

A.2. Chromatic Aberrations
The focal length at a different wavelength can be estimated
by scaling the designed focal length of 532 nm proportion-
ally to the wavelength ratio, assuming that the lens mate-
rial and structure introduce purely dispersive effects with-

out significant aberrations [15, 36]: f(λ) = f0 × λ
λ0

, where
f0 and λ0 are the constants of the designed metalens pa-
rameters, facilitating the prediction of focal lengths across
different wavelengths. As illustrated in Fig. 3, the light of
different wavelengths (i.e., different colors) will have differ-
ent focal lengths (along the z-axis). Red light has a shorter
focal length, while blue light has a longer one. Due to these
varying focal lengths, specific light colors will appear out
of focus when capturing color images, resulting in blurring
differently in each color channel. Mismatched color offsets
can also create color fringing around objects, especially at
high-contrast edges.

Figure 3. Focal lengths of the metalens for different wavelengths.



Color Red Orange Yellow Green Cyan Blue Violet
Wavelength 650 nm 610 nm 570 nm 532 nm 490 nm 450 nm 410 nm
Efficiency 0.3524 0.5281 0.7371 0.9920 0.7032 0.1885 0.1738

Table 1. Comparison of the intensity at the focusing points for each color, serving as the transformation efficiency T in the proposed
Optics-informed Intensity Adjustment (OIA) module.

A.3. How to Solve Metalens Chromatic Aberrations

Physical Solution. To physically correct ACA by ensur-
ing identical focal lengths across different wavelengths,
the design of an achromatic metalens must incorporate an
additional wavelength-dependent phase delay ∆ϕ(r, λ) to
achieve the optical rectification [11, 26, 38]:

ϕAchromatic(r, λ) = ϕ(r, λmax) + ∆ϕ(r, λ), (2)

∆ϕ(r, λ) = −
[
2π

(√
r2 + f2 − f

)]( 1

λ
− 1

λmax

)
+

δ

λ
· λminλmax

λmax − λmin
− δλmin

λmax − λmin
. (3)

Here, ϕAchromatic(r, λ) is the achromatic focusing phase at
position r for wavelength λ, and δ represents the maximum
additional phase shift required. However, as the size of
the metalens increases, the necessary additional phase de-
lay also grows, posing significant and open challenges. Due
to the limitations of current micro-nano processing technol-
ogy, finding a solution solely through the geometric design
of the nano-antennas proves challenging.

Computer Vision Solution. To overcome inherent physical
constraints, alternative approaches that leverage computer
vision and computational optics have garnered significant
attention for addressing ACA in metalenses [7, 33, 35, 37,
41]. Recent advancements and the democratization of com-
puting platforms have positioned these methods as promis-
ing solutions, effectively bridging both hardware and soft-
ware limitations. By accurately modeling the degradation
patterns caused by ACA, machine learning algorithms can
be trained to predict and compensate for aberrations, reduc-
ing reliance on intricate nanoantenna designs. Additionally,
computer vision techniques enable the learning and adap-
tation to ACA-induced degradation patterns, offering a ver-
satile and efficient means to mitigate aberrations in metal-
ens systems. This integration of computer vision enhances
the performance and reliability of metalenses and facilitates
scalable and adaptable solutions for real-world applications,
highlighting the transformative potential of combining com-
putational intelligence with optical design.

Figure 4. Illustration of the spatial prior of the metalens imaging.

B. Optical Simulation Experiments
B.1. Channel Prior
To model the specific color dispersion and derive the chan-
nel prior T, we use Fresnel diffraction [6, 32] to simulate
the light propagation, as described by the following equa-
tion:

I(x, y, z) = |E(x, y, z)|2

=

∣∣∣∣ ∫∫ E0(u, v)P (u, v)T (u, v)
eikz/λz

λz

× exp

(
ik

2z

[
(x− u)2 + (y − v)2

])
du dv

∣∣∣∣2.
(4)

Here:
• I(x, y, z) represents the light intensity at position
(x, y, z), which is the energy of electric field E(x, y, z).

• E0(u, v) = A0(u, v) exp (iϕ0(u, v)) is the input electric
field on the initial plane (u, v). A0(u, v) is the input am-
plitude, and ϕ0(u, v) is the input phase.

• P (u, v) =

{
1 if

√
u2 + v2 ≤ R

0 if
√
u2 + v2 > R

is the aperture func-

tion. R is the lens radius. An aperture is an optical el-
ement that limits the propagation of a light beam, defin-
ing the area through which the light passes. The function
P (u, v) takes a value of 1 within the aperture area (indi-
cating that light passes) and 0 outside this area (indicating
that light does not pass).

• T (u, v) = Ameta(u, v, λ) exp (iϕmeta(u, v, λ)) is the
transformation function of metalens, including the am-
plitude Ameta(u, v, λ) and phase ϕmeta(u, v, λ) modu-
lation provided by the metalens at the position (u, v) for
the working wavelength λ.

• k = 2π
λ is the wave vector.



Figure 5. Qualitative restoration on the real scenes, including endoscopic education models (Left) and excised porcine intestine (Right).

Meta-CVC-Clinic Meta-CVC-Colon Meta-Kvasir-Seg Meta-EndoVis-17 Meta-EndoVis-18
DRMI 34.05 36.50 32.76 30.82 30.90
Ours 36.47 37.53 33.40 31.40 31.55

Table 2. Performance comparison on a unified model trained with all five datasets.

metalens-1 (10 mm) metalens-2 (5 mm)
- Zero-shot Fine-tuned

85.55 82.82 86.37

Table 3. Cross-metalenses (cross-dataset) generalization of using
the MetaScope trained on metalens-1 dataset (mIoU).

• λ is the wavelength.
With this equation, we could derive the Point Spread Func-
tion (PSF) details of all wavelengths through the metal-
ens in 3D space. PSF is the imaging response of an opti-
cal system to an ideal point light source, directly govern-
ing spatial resolution and color fidelity, which can be re-
garded as the distortion kernel. The chromatically aber-
rated image Ica(x, y) can be mathematically expressed as
the convolution of the true, clean image with the PSF of
the optical system, Ica(x, y) = I0(x, y) ∗ PSF (x, y). For
each wavelength, the light intensity I(x, y, z) will reach the
maximum at the focal spot position (x0, y0, fλ). Fig. 3
demonstrates the focal sections along the x axis at the fo-
cal plane (x, y, f) for seven wavelengths of different col-
ors,

∑
λ I(x, y, z)|y=y0,z=fλ . Compared to the designed

green light at 532 nm, the focusing efficiency of other col-
ors is slightly lower. Tab. 1 compares the intensity at the
focusing points for each color. This efficiency buffer is
the transformation efficiency T in the proposed Optics-
informed Intensity Adjustment (OIA) module. Considering
the three-channel properties of images, the red, green, and
blue (RGB) ones are encoded into optical embeddings to
adjust the channel attention.

B.2. Spatial Prior
To analyze the spatial light distribution pattern Y of the
metalens, a picture of a large bright white object is taken
by the metalens. As shown in the right panel of Fig. 4, we
derive a white image whose color is slightly reddish even

applying the sensor built-in automatic white balance func-
tion with a 1.67:1:2.34 RGB gain. Wavelength-dependent
meta-atom responses fundamentally constrain color chan-
nel balancing. The sharp exposure boundaries in the white
image are defined by the aperture. Threshold-based mor-
phological analysis can yield the morphological center co-
ordinates of the circular area, which is (x0, y0). Cutting
a line in the white image along y = y0, we can have the
spatial RGB light distribution, as shown in the left panel
of Fig. 4. An attenuation exhibits a spatially radial pattern,
where the edge regions demonstrate more significant atten-
uation than the center areas. The radial attenuation pattern
stems from two compounding factors: 1) Meta-atom off-
axis efficiency decay ηmeta(θ), where nanostructures ex-
hibit reduced light control capability at oblique angles, and
2) Geometric vignetting governed by the cos4 θ law. Hence,
we directly encode this optical prior at the spatial level to
adjust the feature representation.

C. More Experimental Verifications
C.1. Real Scene Generalization
To verify the real-scene generalization, we capture real in-
testinal scenes using metalens. Due to the unavailability
of in vivo experiments, which require additional biologi-
cal approvals, an endoscopic education model is employed
to simulate intestinal scenes. The model is positioned at
varying distances (from 1 cm to 7 cm) from the optical sys-
tem for imaging. As shown in Fig. 5 (Left), MetaScope
demonstrates generalization to real scenes and diverse dis-
tances, a finding corroborated by [11]. Note that capturing
real scenes precludes obtaining non-degraded ground truth,
limiting model training and quantitative evaluation.

We further conduct biomedical verification by pho-
tographing the excised porcine intestine (see Fig. 5 (Right)).
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Figure 6. Visualization of the red, green, and blue channels of the samples from our metalens visual datasets.

Due to the inability to preserve biological tissues for ex-
tended periods, this experiment is conducted as a one-time
trial. Our MetaScope achieves impressive achromatic cor-
rection results, revealing its superiority in clinical general-
ization. As clinical in vivo verification on humans requires
strict ethical certifications, we are actively pursuing the nec-
essary clearance.

C.2. Scaling Up Training with All Datasets
To further demonstrate the effectiveness of our algorith-
mic designs, we train a unified model using all captured
data (five datasets) and compare it with the state-of-the-
art method in metalens imaging, DRMI [33]. As shown in
Tab. 2, our method consistently outperforms DRMI across
all datasets, highlighting its superior scalability and gener-
alization capabilities.

C.3. Generalization to Different Metalenses
We specifically focus on designing general metalenses that
lack achromatic properties, thereby establishing a uniform
degradation model. This model is not only relevant to vari-
ous metalenses but also extends its applicability to diffrac-
tive optical elements (DOE) lenses, thereby broadening its
scope and significance in optical research.

To validate our approach and dataset, we recaptured
the CVC-Clinic dataset using a new metalens with a fo-
cal length of 5 mm. We then evaluated the performance
of MetaScope on this dataset (Tab. 3). Remarkably, without
any retraining, MetaScope achieved a satisfactory mIoU of
82.82%, which is comparable to the mIoU of 85.55% ob-
tained with the conventional metalens. Furthermore, after

fine-tuning, MetaScope demonstrated even superior perfor-
mance, achieving a mIoU of 86.37%. These results high-
light the significant value of the proposed datasets and the
generality of our MetaScope.

C.4. Model Efficiency
We further assess the model size and inference speed.
MetaScope demonstrates remarkable efficiency, featuring
only 12M parameters and achieving an inference speed of
23.4 FPS. This performance significantly outperforms the
state-of-the-art Mask2Former, which has 44M parameters
and operates at 16.9 FPS. The lightweight architecture of
MetaScope enables real-time processing capabilities, mak-
ing it applicable in endoscopic surgery and diagnostics,
where instantaneous imaging and analysis are crucial.

C.5. Dataset Analysis
Fig. 6 showcases metalens images alongside paired convex-
lens images from our meticulously constructed datasets.
Compared to convex-lens counterparts, metalens images ex-
hibit noticeable variations in color and blurriness, primarily
due to axial chromatic aberration inherent in the metalens
design. To explore these in detail, we present separate vi-
sualizations for each red, green, and blue channel for both
metalens and convex-lens configurations. This comparison
reveals significant disparities in intensity degradation and
dispersion: while the red and green channels show min-
imal degradation, the blue channel experiences consider-
able degradation across all samples. This phenomenon is
attributed to the optimization of our metalens for a wave-
length of 532 nm with a focal length of 10 mm, which aligns



more closely with red and green wavelengths and is less
compatible with blue wavelengths (as illustrated in Fig. 3).
These observations have driven the design of our OIA and
OCC techniques, which enhance metalens image-based in
vivo intelligence. This advancement highlights the superior
performance and tailored design of our metalens system in
mitigating chromatic aberrations, thereby significantly en-
hancing reliability for real-world clinical applications.

C.6. Metalens Imaging Segmentation
Fig. 7 presents a qualitative comparison of metalens
imaging segmentation performance between our pro-
posed MetaScope and state-of-the-art methods, including
Rolling Unet [29], U-KAN [18], Mask2Former [10], and
EDAFormer [40]. In abnormality segmentation tasks, as
illustrated from row 1 to row 6, MetaScope consistently
demonstrates superior accuracy in identifying polyps across
various complex scenarios, excelling particularly in detect-
ing small polyps (row 4) and accurately segmenting larger
polyp areas (row 5). Furthermore, in the more challenging
domain of surgical instrument segmentation, MetaScope
continues to outperform current state-of-the-art methods by
significantly enhancing the completeness of the ultrasound
probe (highlighted in pink in row 7) and accurately delin-
eating large needle drivers (highlighted in red in row 9).
Remarkably, MetaScope is also capable of precisely iden-
tifying suction instruments (highlighted in yellow in row 8)
that are only partially visible within the field of view. These
results underscore MetaScope’s robust capability to handle
complex and partially obscured objects, demonstrating its
strong potential and effectiveness for real-world practice.

C.7. Metalens Imaging Restoration
Fig. 8 provides a visual comparison of restoration quality
between our proposed MetaScope and the latest methods,
including SWinIR [25], MambaIR [12], and NeRD-rain [8].
MetaScope significantly outperforms these approaches by
accurately restoring the structure and color of polyps (rows
1 to 3), capturing intricate vascular details (row 5), and
maintaining the overall scene color fidelity (rows 4 and 6).
In more complex surgical scenarios, MetaScope continues
to surpass state-of-the-art methods, particularly excelling in
rendering accurate colors (rows 7 and 9) and fine texture
details (row 8) of surgical instruments. These superior ca-
pabilities highlight MetaScope’s robust performance in han-
dling diverse and challenging imaging conditions, demon-
strating its strong potential and effectiveness for real-world
medical applications.

C.8. Data Visualization
We present sample images from our constructed datasets,
including Meta-CVC-Clinic, Meta-CVC-Colon, Meta-
Kvasir-Seg, Meta-EndoVis-17, and Meta-EndoVis-18. As

illustrated in Fig. 9, the images across these datasets exhibit
similar meta-distortions. Additionally, our datasets offer
extensive diversity, encompassing a wide range of in-vivo
clinical scenarios that capture various pathological condi-
tions and anatomical variations inherent to endoscopic pro-
cedures. This diversity enables comprehensive benchmark-
ing of metalens imaging analysis in clinical in vivo settings,
supporting a variety of research objectives, including gen-
eralization, transferability, and robustness.

D. Discussion and Clarifications
D.1. Dataset Information
The dataset details are as follows: (1) CVC-Clinic [5] is a
publicly available dataset comprising 612 images extracted
from 29 colonoscopy videos, each annotated with pixel-
wise polyp masks. (2) CVC-Colon [4] consists of 380
polyp-annotated images sourced from 15 short colonoscopy
video sequences. (3) Kvasir-Seg [14] is a gastrointesti-
nal polyp segmentation dataset that includes 1,000 images
and corresponding segmentation masks. (4) EndoVis17 [2]
consists of 1,800 frames with annotations for various sur-
gical instrument types, enabling the analysis and recogni-
tion of instruments in minimally invasive surgeries. (5)
EndoVis18 [3] consists of 2,384 frames and features more
complex porcine tissue and dynamic instrument movements
with eight classes. Our metalens photoed datasets are
named by adding the Meta prefix, such as Meta-CVC-
Clinic. During dataset construction, we first calibrate the
meta-camera to ensure that the photographed and original
images are pixel-perfectly aligned [11]. Considering the
clinical practice with insufficient illumination, we then gen-
erate the dataset under artificial light scenarios without sun-
light to simulate endoscopic environments.

D.2. Physically Suitable for Endoscopy
To achieve accurate diagnosis and surgical operations, high-
resolution imaging is essential for providing detailed visual-
ization, such as identifying micro-lesions or vascular struc-
tures. Specifications for high-resolution imaging typically
require a focal length of f = 10 ∼ 50 mm, a field of view
(FOV) of 10◦ ∼ 50◦, and an f-number (F/#) of 3.5 ∼ 5.6.
Our optical system, featuring a focal length of f = 10
mm, a field of view (FOV) of 31◦, and an f-number (F/#)
of 3.8, is fully suitable for endoscopy applications that de-
mand high resolution for observing subtle tissues.

D.3. Implementation of the KL Divergence
The proof and implemented version of KL Divergence Loss
LKL (Eq. 7 in the main paper) is detailed as follows. In-
spired by variational auto-encoders [16], the KL divergence
term establishing the proxy offset latent feature LKL =
KL (qϕ(z | X)|N (0, I)) used in the optics-informed dis-



persion correction module, is derived as follows:

KL (qϕ(z | X)|N (0, I))
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∫
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where µ and σ represent the mean and standard deviation of
the latent space, respectively. These parameters are learned
through two linear layers, µ(X) and logσ2(X), as detailed
in Section 4.2 of the main paper.

D.4. Related Work
Recent advancements in endoscopic image analysis have
significantly enhanced diagnostic capabilities and surgical
procedures [1, 13, 17, 19, 27, 28, 30, 31, 34, 39]. Some
works focus on improving representation learning [9, 13,
21, 23, 34], removing surgical smoke [39], and integrating
complementary modalities [28] to facilitate precise diagno-
sis and recognition during inspections and surgeries. Other
works target accurate depth estimation [31] and pose es-
timation [30], and domain shifts [20, 22, 23] to enable au-
tonomous navigation [24]. These studies, limited to convex-
lens-based systems, hinder the potential for micro-in-vivo
intelligence. In contrast, we explore metalens-based per-
ception to advance micro-miniaturized in vivo diagnostics
and surgery, fully exploring the inherent optics-driven in-
sights for the methodology design.

D.5. Ethical Clarification
This research complies with all relevant ethical standards
and regulations. The data used in this study were sourced
from publicly available repositories [2–5, 14], ensuring
that no identifiable personal information is included. All
datasets used adhere to privacy laws and institutional guide-
lines governing the use of medical information. Addition-
ally, the study does not involve direct interaction with hu-
man subjects, eliminating concerns about consent and par-
ticipant welfare. We confirm that this work does not present
ethical issues and aligns with the ethical principles required
for medical AI research.
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Figure 7. Qualitative comparison of state-of-the-art segmentation methods on Meta-CVC-Colon, Meta-Kvasir-Seg and Meta-EndoVis-18.
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Figure 8. Qualitative comparison with state-of-the-art restoration methods on Meta-CVC-Colon, Meta-Kvasir-Seg and Meta-EndoVis-18.
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Figure 9. Visualization of samples from five Metalens Imaging datasets.
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Halvorsen, Thomas De Lange, Dag Johansen, and Håvard D
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