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Appendix

In this Appendix, we present more details for Morph, in-
cluding data preprocess, additional experimental results,
qualitative comparisons. First, we describe the data pre-
processing procedure used for training the Motion Physics
Refinement (MPR) module with generated motion data
(Sec. A). Then, we present experimental results analyzing
the impact of τ in the imitation selection operation (Sec. B),
the effect of varying the quantity of noisy motion data for
MPR training (Sec. C), and effect of the number of training
rounds for Morph (Sec. E). Finally, we provide additional
qualitative comparisons for text-to-motion and music-to-
dance tasks (Sec. H).

A. Details for Data Preprocess

As discussed in the main text, the generated motion se-
quences may exhibit issues such as body leaning, floating
and ground penetration. When imported into the simulator,
these issues can cause instability in the robot, potentially
causing it to fall, bounce off the ground, or drop from mid-
air. To address this issue, we apply a preprocessing step to
the motion sequences, detailed in Fig. 1 and Alg. 1. Specif-
ically, we first compute the body’s tilt angle, defined as the
angle between the projection of the center of mass onto the
ground and the line connecting both feet. If this angle ex-
ceeds 10◦, we apply the necessary adjustment to the pelvis
throughout the sequence. To correct floating and penetra-
tion, we determine the lowest mesh height and adjust the
entire sequence by this offset. The preprocessed sequence
is then used for training and inference.
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Figure 1. A flowchart illustrating the data preprocessing process.
The parameters are calculated from the first frame and then applied
to all generated motion sequences before they are fed into the MPR
module.

Algorithm 1 Preprocessing Motion Sequences

Require: Motion sequence S with frames F1, F2, . . . , Fn

Ensure: Preprocessed motion sequence S′

Step 1: Calculate the angle θ
(1) Compute the projection of the center of mass of F1

onto the ground.
(2) Determine the line connecting the pelvis point and

the center of both feet in F1.
(3) Calculate the angle θ between the projection and the

line.
Step 2: Correct posture if θ > 10◦

(1) Apply an additional rotation to the pelvis for the
entire sequence S.

Step 3: Ensure F1 is on the ground
(1) Infer the lowest point height h of the mesh in F1.
(2) Add a uniform offset to the entire sequence S.
Step 4: Output the preprocessed sequence S′.

B. Effect of τ in Imitation Selection on Morph

In Tab. 1, we analyze the effect of the threshold τ in the im-
itation selection operation on Morph. Different values of τ
are tested to assess the performance of Morph-MoMask†
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Table 1. Hyper-parameter analysis of τ in Imitation Selection operation. Comparison with different values of τ based on Morph-MoMask†
(combined with MoMask [1] motion generator, without fine-tuning motion generator) for text-to-motion task on HumanML3D dataset.
The arrows (↑ / ↓) indicate that higher/smaller values are better.

Methods Common Generation Metrics Physical Plausibility Metrics

RTOP-1 ↑ RTOP-3 ↑ FID ↓ Diversity ↑ PFC ↓ Penetrate ↓ Float ↓ Skate ↓ IFR ↓
τ=0.0 0.521 0.807 0.045 9.641 1.058 23.152 10.660 5.262 -
τ=0.1 0.520 0.806 0.048 9.636 0.877 3.564 4.779 2.128 0.1281
τ=0.2 0.519 0.805 0.056 9.625 0.771 0.838 4.015 1.057 0.0540
τ=0.3 0.518 0.805 0.067 9.583 0.757 0.054 3.200 0.529 0.0258
τ=0.4 0.517 0.803 0.071 9.584 0.722 0.002 2.991 0.211 0.0158
τ=0.5 0.516 0.802 0.074 9.578 0.669 0.000 2.268 0.011 0.0153
τ=0.6 0.512 0.801 0.079 9.576 0.664 0.000 2.263 0.010 0.0144
τ=0.7 0.510 0.799 0.080 9.543 0.660 0.000 2.093 0.006 0.0128
τ=0.8 0.506 0.797 0.081 9.520 0.645 0.000 2.022 0.005 0.0124
τ=0.9 0.504 0.795 0.085 9.408 0.634 0.000 1.985 0.004 0.0117
τ=1.0 0.497 0.793 0.084 9.255 0.623 0.000 1.982 0.003 0.0111

Table 2. Comparison of text-to-motion with different amounts of noisy motion data training for Morph-MoMask† (combined with MoMask
[1] motion generator, without fine-tuning motion generator). N refers to the total number of generated noisy motion data samples, which
is three times the amount of the original real training data. D refers to the number of generated motion data used to train the MPR module.
We set τ as 0.5 for testing.

Methods Common Generation Metrics Physical Plausibility Metrics

RTOP-1 ↑ RTOP-3 ↑ FID ↓ Diversity ↑ PFC ↓ Penetrate ↓ Float ↓ Skate ↓ IFR ↓
D=25%N 0.495 0.791 0.087 9.477 0.866 0.120 2.997 0.035 0.0262
D=50%N 0.498 0.795 0.082 9.536 0.815 0.022 2.870 0.023 0.0205
D=75%N 0.512 0.800 0.078 9.569 0.761 0.002 2.429 0.012 0.0178
D=100%N 0.516 0.802 0.074 9.578 0.669 0.000 2.268 0.011 0.0153

Table 3. Comparison of text-to-motion with multi-round optimization of the MPR module and motion generator based on Morph-MoMask.
We set τ as 0.5 and use the total number of generated noisy motion data to train.

Methods Common Generation Metrics Physical Plausibility Metrics

RTOP-1 ↑ RTOP-3 ↑ FID ↓ Diversity ↑ PFC ↓ Penetrate ↓ Float ↓ Skate ↓ IFR ↓
One-Round w/o FT 0.516 0.802 0.074 9.578 0.669 0.000 2.268 0.011 0.0153
One-Round 0.525 0.816 0.041 9.689 0.645 0.000 2.141 0.010 0.0149
Two-Round w/o FT 0.526 0.817 0.041 9.692 0.632 0.000 2.129 0.010 0.0134
Two-Round 0.527 0.818 0.038 9.697 0.625 0.000 2.108 0.007 0.0129

Three-Round w/o FT 0.526 0.821 0.040 9.701 0.621 0.000 2.121 0.009 0.0131
Three-Round 0.528 0.823 0.034 9.715 0.618 0.000 2.100 0.006 0.0122

(combined with MoMask [1] motion generator, without
fine-tuning motion generator). When τ is set to 0, the mo-
tion refined by the MPR module is not utilized, and Morph
directly outputs the results from the motion generator. As
τ increases, the physical plausibility metrics improve sig-
nificantly. However, the generation metrics show a slight
decrease due to the inclusion of some incorrectly refined

or non-grounded motions at higher thresholds. Larger val-
ues of τ incorporate more refined motions, improving the
physical plausibility metrics. However, this also increases
the acceptance of incorrectly refined motions, leading to a
shift in the motion distribution and a corresponding decline
in the generation metrics. According to Tab. 1, we observe
that τ = 0.5 strikes a balance between generation and phys-



ical plausiibility metrics. Therefore, we set τ to 0.5 in this
paper.

C. Effect of Varying Amounts of Noisy Motion
Data on Morph

In Tab. 2, we investigate the impact of varying amounts of
generated motion data on the training of Morph. Differ-
ent numbers of generated motion data are used to train the
MPR module in Morph-MoMask†. As shown in Tab. 2, in-
creasing the amount of training data for the Motion Physics
Refinement (MPR) module leads to improvements in both
the generation and physical plausibility metrics on the test
set. These results indicate that a larger volume of generated
motion data enhances the MPR module’s ability to better
mimic the input motion and produces higher-quality out-
puts. Conversely, when the MPR module is trained with a
smaller dataset, its motion imitation capability diminishes,
leading to greater discrepancies between the generated and
input motions. This results in a decline in both the genera-
tion and physical plausibility metrics. These results further
highlight the effective data augmentation capability of our
proposed Morph.

Table 4. The win rate of Morph over baselines.
Module Semantic Consistency Realism Physical Plausibility Fluency
MDM-Morph vs. MDM 84.8% 80.1% 96.6% 85.0%
T2M-GPT-Morph vs. T2M-GPT 87.1% 79.6% 94.4% 81.2%
MoMask-Morph vs. MoMask 90.4% 88.3% 97.5% 80.9%

D. Effect of Multi-Round Optimization of the
MPR module and MG on Morph

In Tab. 3, we analyze the effect of multi-round optimiza-
tion of the Physics Refinement (MPR) module and Motion
Generator (MG) on Morph using Morph-MoMask. To fur-
ther validate the effectiveness of this round-based training
approach in enhancing both the MG and the MPR module,
we conducted an additional round of training beyond this
single-round training described in the main text. This extra
round explores the potential for mutual enhancement be-
tween the two modules. In Tab. 3, the following terms are
defined:
• One-Round w/o FT: The first round of training where

only the MPR module is trained.
• One-Round: The first round of training that includes both

training the MPR module and fine-tuning the MG.
• Two-Round w/o FT: Training the MPR module again us-

ing the motion data generated by the fine-tuned MG from
the first round.

• Two-Round: Fine-tuning the Motion Generator using the
results from Two-Round w/o FT.

• Three-Round w/o FT: Training the MPR module again
using the motion data generated by the fine-tuned MG
from the second round.

• Three-Round: Fine-tuning the Motion Generator using
the results from Three-Round w/o FT.
As shown in Tab. 3, in the first round of training, MG

improves the performance of MPR module, enhancing the
physical quality of its generated motion. The refined motion
data from the trained MPR module is then used to fine-tune
the MG, boosting its performance further. In the second
round, the fine-tuned MG from the first round is used to
generate training data for the MPR module (initialized with
first-round weights). We observed improvements in Two-
Round w/o FT compared to One-Round, with PFC increas-
ing by 0.013, Float by 0.012, and IFR decreasing, indicat-
ing enhanced motion imitation by the MPR module. After
fine-tuning the MG once again, Two-Round shows improve-
ments in the RTOP-1 and RTOP-3 metrics. The model’s
generation and physical performance reached their best in
Three-Round. These results clearly demonstrate that the
MG and MPR modules can mutually enhance each other.
Moreover, alternating training between the MG and MPR
modules across multiple rounds can further improve the per-
formance of Morph.

E. Semantic Alignment Analysis

As shown in Fig. 2, Morph significantly outperforms MG
on alignment metrics. Globally, Morph demonstrates supe-
rior realism by closely matching the statistical distribution
of real motions—exhibiting similar clustering patterns and
range of variation (Left). Crucially, it also achieves stronger
semantic alignment with input text features, forming tighter
clusters around corresponding text embeddings to better
capture intended meanings (Middle). Locally, Morph pro-
vides enhanced semantic matching at the segment level, en-
suring fine-grained motion elements correspond more accu-
rately to detailed text semantics throughout the sequence
(Right). In summary, Morph can generate semantically
faithful, realistic motions compared to the MG baseline.

F. Cross-Task Generalization Ability

To evaluate the cross-task generalization of the MPR mod-
ule, we conducted cross-validation by testing its perfor-
mance across two distinct tasks: text-to-motion (using the
MoMask dataset) and music-to-dance (using Bailando).
These tasks differ significantly in input modalities—one
driven by linguistic descriptions, the other by rhythmic
audio-and in motion characteristics, from daily actions to
stylized dance moves. As shown in Tab. 5, the MPR mod-
ule retains strong performance even when trained without
task-specific synthetic data: it not only preserves motion
quality (e.g., smooth transitions and natural postures) but
also maintains physical plausibility (avoiding joint distor-
tions or gravity-defying movements). This confirms its abil-
ity to generalize beyond specific task boundaries.



Figure 2. T-sne of motion and text distribution between MG and Morph.

Table 5. Cross-Task generalization results on Music2Dance and Text2Motion

Task FID/FIDk ↓ FIDg ↓ RTOP3/Divk ↑ PFC ↓ Penetrate ↓ Float ↓

Cross-task generalization evaluation

Text-to-Motion (MPR trained on T2M) 0.074 – 0.802 0.669 0.000 2.268
Text-to-Motion (MPR trained on M2D) 0.116 – 0.795 0.881 0.000 2.436
Music-to-Dance (MPR trained on M2D) 35.48 7.70 12.03 0.044 0.000 2.076
Music-to-Dance (MPR trained on T2M) 37.66 7.38 14.02 0.057 0.000 2.193

Action-to-motion tests

Action Label-to-Motion (MDM-action) 0.497 – 0.396 0.544 15.770 7.467
Action Label-to-Motion (MDM-action with Morph) 0.424 – 0.416 0.509 0.000 2.115

GAN-based Transformer tests

Text-to-Motion (GAN-based Transformer) 0.628 - 0.736 0.933 47.612 21.008
Text-to-Motion (GAN-based Transformer with Morph) 0.606 - 0.755 0.742 0.000 2.637

Long-duration dance samples tests

Music-to-Dance (30s long-term dance, Lodge) 45.56 34.29 6.75 0.114 46.772 29.857
Music-to-Dance (30s long-term dance, Lodge-Morph) 43.96 32.88 6.90 0.083 0.000 3.163

PHC-based baseline

Text-to-Motion (MoMask+PHC) 0.183 - 0.785 0.749 0.000 2.451
Text-to-Motion (MoMask+Morph) 0.041 - 0.816 0.647 0.000 2.141

G. User Study
In the user study, we evaluated win rates across four crit-
ical dimensions—semantic alignment (matching text de-
scriptions), authenticity (resembling real motions), physical
plausibility (avoiding unnatural joint movements), and flu-
ency (smooth temporal transitions). Morph decisively out-
performed baseline methods here: as shown in Tab. 4, it
achieved significantly higher win rates of 87.4%, 85.2%,
96.2%, and 82.4% respectively. Such consistent leads
across all key metrics confirm its comprehensive advantages
in motion generation quality.

H. More Qualitative Results
Fig. 3 and Fig. 4 provide the additional qualitative results
for the text-to-motion and music-to-dance generation tasks
using Morph.

As shown in Fig. 3, in the text-to-motion generation

task, floating and penetration are common artifacts in mo-
tion generation, often resulting from inaccuracies in the es-
timation of translation. However, Morph effectively ad-
dresses these issues, successfully mimicking the input mo-
tion and demonstrating a significant improvement in miti-
gating these artifacts. The generated motions are both phys-
ically plausible and realistic, showcasing Morph’s enhanced
performance in this task.

As shown in Fig. 4, in the music-to-dance generation
task, floating and penetration are the most prominent issues.
Due to the faster frequency of dance movements, these ar-
tifacts occur more frequently. Morph effectively mitigates
these issues, generating motions that are not only physically
plausible but also exhibit a higher degree of realism.

In summary, Morph demonstrates significant improve-
ments in both the text-to-motion and music-to-dance tasks.
By accurately estimating translational motion, Morph is
able to generate motions that are not only physically fea-



sible but also exhibit a higher degree of realism.
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Input: A person marches forward, turns around, and 
then marches back.

Input: A man walks forward in a straight line.

Input: A person steps back two steps and lowers to a 
crouch position.

Input: A person takes two long strides forward, pivots swiftly 
on their right foot, and then walks the other way.

Input: A man stumbles sideways to the left.

Morph-MoMask MoMask

Floating

Floating

Penetration

Penetration

Penetration

Input: A person stumbles forward a few steps. Floating Penetration

Input: A boxer lumbers up ready for a fight with a series 
of faux jabs.

Floating Penetration

Penetration

Penetration Floating

Figure 3. Qualitative comparisons for text-to-motion on HumanML3D test set between Morph-MoMask and MoMask.



Morph-Bailando Bailando

Input: <Testing Music Sample 1> Floating Penetration

FloatingInput: <Testing Music Sample 2>

Input: <Testing Music Sample 3> PenetrationFloating

Input: <Testing Music Sample 4> Floating Penetration

Input: <Testing Music Sample 5> Floating Penetration

Input: <Testing Music Sample 6> PenetrationFloating

Input: <Testing Music Sample 7> Floating

Figure 4. Qualitative comparisons for music-to-dance on AIST++ test set between Morph-Bailando and Bailando. For music-to-dance, the
testing music samples will be used as inputs.
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