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7.1. Disclaimer

This is a research work where the primary focus is intro-
ducing a new task and a method to learn effective mul-
timodal representation for generative simulation. We de-
vise our multimodal feature extraction as generic to be
combined when stronger video generation backbone is in-
vented. High-resolution videos are not the main focus of this
work. We provide higher resolution results of our model
in Sec. 7.8.11, and we conduct all experiments shown in the
paper using the same video resolution, including our model
and all baseline methods trained. We hope our work can
inspire future research works and industrial efforts to build
foundational digital twin of our world with fine-grained con-
trol. We hope that our work can be used to scale with more
abundant resources.

7.2. Notation Chart

We summarize the notation used in our paper in Table. 4.

7.3. Related Work
Learning Multi-Modal Representations. Learning shared
representations across various modalities has been instru-
mental in a variety of research areas. Early research by De
Sa et al. [12] pioneered the exploration of correlations be-
tween vision and audio. Since then, many deep learning
techniques have been proposed to learn shared multi-modal
representations, including vision-language [14, 29, 41, 53],
audio-text [3], vision-audio [4, 27, 45, 46, 49], vision-
touch [37, 70], and sound with Inertial Measurement Unit
(IMU) [8]. Recently, ImageBind [19] and Language-
Bind [76] demonstrate that images and text could success-
fully bind multiple modalities, including audio, depth, ther-
mal, and IMU, into a shared representation. However, these
previous efforts take bind-all fuse-all perspective, which
takes away many of the inherent differences brought by
various sensory modalities. Our work takes a different per-
spective. By differentiating between the active and passive
senses, we allow a bilateral model to arise and capture the
interaction between the two. The prior fuse-all strategy also
overshadows an inherent need in multi-modal representation
learning, which is interaction. We propose a representa-
tion learning scheme to capture the nature of multi-modal
interactions.

Learning World Models. Learning accurate dynamics
models to predict environmental changes from control inputs
has long challenged system identification [39], model-based
reinforcement learning [61], and optimal control [5, 77].
Most approaches learn separate lower-dimensional state
space models per system instead of directly modeling the
high-dimensional pixel space [2, 6, 18, 35]. While simpli-
fying modeling, this limits cross-system knowledge shar-
ing. Recent large transformer architectures enable learning
image-based world models, but mostly in visually simplistic,
data-abundant simulated games/environments [7, 21, 22, 43,
58, 68]. Prior generative video modeling works leverage
text prompts [72, 75], driving motions [60, 66], 3D geome-
tries [67, 69], physical simulations [11], frequency data [38],
and user annotations [24] to introduce video movements.
Recently, Yang et al. [71] proposes Unisim, which uses text
conditioned video diffusion model as an interactive visual
world simulator. However, these prior works focus on using
text as condition to control video generation, which limits
their ability to precisely control the generated video output,
as many fine-grained interactions and subtle variations in
control are difficult to be accurately described only using
text. We propose to use complementary multi-sensory data
to achieve more fine-grained temporal control over video
generation through multi-sensory action conditioning.

7.4. Implementation Details
Network Architecture Detail We use the open-source
I2VGen [74] video diffusion network as our backbone. We



a) b) c) d)

Figure 10. Existing multimodal learning tasks focus on vision-language binding, cross-modal retrieval, and modalitiy anchoring focuses on mining the
similarity between different modalities of data (a, b, c) [19, 57, 71]. On the other hand, the task of multisensory action conditioned generative simulation (d)
need to understand the unique aspect of each interoceptive action modalities (top) and combine the synchronously to change the exteroception of the external
world (bottom).

modify original I2VGen to take pixel space data by changing
the input channel to 3 (originally set to 4) and change input
image size to 64⇥ 64. We keep all other parameters unmod-
ified, and vary the input condition type. We note that single
condition models that only use image or text such as Stable
Diffusion [56] and etc. are not sufficient for our purpose.

All text input are encoded using CLIP text encoder from
the open-source OpenClip [1] libary. Images are encoded
also using OpenClip Image encoder. Specifically, we use the
ViT-H-14 version with laion2b_s32b_b79k weights. Please
refer to the original papers [1, 74] their architecture details.
We describe the architecture of the remaining modules of
our model.

Signal specific encoder heads for hand pose, body pose,
emg uses the same MLP architecture with different input
dimension. The input dimension for hand pose is 24 ⇥

3 ⇥ 8, body pose is 28 ⇥ 3 ⇥ 8, emg is 8⇥, hand force
is 32 ⇥ 32 ⇥ 8. MLP is composed of four layers, with
GeLU activation. We set the hidden and output dimension
of 128. We apply a dropout with p=0.1, with batchnorm
applied in the first two layers. All encoded signals then goes
through a three-layer MLP projection head to project the
encoded feature to the same space R1024 as the clip image
feature. The projection MLP also uses GeLU activation
with dimensions of [input_dim, 512, 768, 1024]. We apply
batchnorm after the first layer. The set of features are then
aggregated across the sensory modalities and masked by a
softmax in the modality dimension.

For the latent interaction layers, we use each context
frame vector and the action vector for the correponding
timestep t for the context frame feature regularization, we
use the aggregated average context frame feature zxt̄

to form
the context vector for the current action features.

For the experiments comparing to unimodal action sen-
sories, we use our own method for encoding these modalities
and conditioning video model. For the sensory modalities
of muscle EMG and hand forces, there lacks research works
concerning the senses of muscle activation and haptic forces.
For hand poses, most works concerning hand poses tackle
the task of detection of hand regions from videos [34, 51, 73].
Therefore they also cannot be directly adapted to compare
with our work. For this reason, we use our own method for
encoding these modalities and conditioning video model.

For experiments on down stream application, we follow
the original diffusion policy implementation. The image
prompted DP (Sec. 4) uses ResNet [25]-18 image encoder,
and the text prompted DP (Sec. 7.8.10) uses OpenClip [1]
text-encoder. We modify the original 1D UNet to be four
layers with hidden dimensions set to [128, 256, 512, 1024].
The dimension of action space comes to 2292, with two hand
poses 24⇥3⇥2, one body pose 28⇥3⇥1, two arm muscle
emg 8⇥ 2, two hand forces is 32⇥ 32⇥ 2.

Hardware, Software, Training Setup We use a server
with 8 NVIDIA H100 GPU, 127 core CPU, and 1T RAM
to train our models for 15 days. We implement all models
using the Pytorch [50] library of version 2.2.1 with CUDA

time frame t
history horizon [0, t� 1]
future frames [t� 1, T ]
video frame xt

encoded video frame zxt

action modality m
action modality signal at,m
encoded action modality m signal at time step t zt,m
j-th dimension of encoded action modality m signal at time step t zt,m,j

cross-modal feature yt
regularized cross-modal feature y0t

Table 4. Notation Chart



12.1, and accelerator [20] and EMA [31] . We train our
models with batch size of 18 per GPU. We use the Adam [32]
optimizer with learning rate of 1e� 4 and betas (0.9, 0.99),
ema decay at 0.995 every 10 iterations.

Experimental Setup The ActionSense [13] dataset does
not contain the detailed text description used in Sec. 3.1. We
generate these text descriptions by using several metrics. We
augment the original dataset by resampling video frames,
three-ways, every frame, every other frame, and every three
frames. We add description of slow in speed to the first
chunk of data, and fast in speed to the third chuck of
data. Additionally we also calculate the average hand force
magnitude for every task. If the hand force sequence contains
frames that are significantly larger than the average frame we
add holding tightly and add holding gently to
the lowest force data sequences.

7.5. Additional Pipeline Figure
W provid additional pipeline Fig. 11.

7.6. Model Size
We report the modules of our model in Table. 5. We can see
that the multimodal action signal module is fairly small com-
pared to the video module. Each signal average to around
18044828 parameters which is only 5 percent of the total
model weights. The lightweight action signal heads high-
lights the advantage of our method for low computational
cost added for each action signal modality

module parameter count percentage of total

signal expert encoder 43780932 0.13
signal projection 11537408 0.03
signal decoder 28398382 0.08
signal Total 83716722 0.25
video model 252380168 0.75
total model 336096890 1.00

Table 5. Parameter Count on 64⇥ 64 model.

Additionally, people are frequently concerned the real-
time execution and edge device computing. We would like to
highlight that our work proposes a multisensory conditioned
video simulator. When employed in robotics applications,
simulator are used in to train policy networks. Normally,
only the trained policy network, rather than the simulator
itself, needs to be deployed on edge devices / robots. In
general, simulators, including ours, do not require to be
executed on edge devices or robots for real-time deployment.

We show such application in Sec. 4 Downstram applica-
tion. Similar to UniSim or any other robotic simulators, we
train a goal-conditioned policy network using our pretrained
video model. We directly adopt diffusion policy [9] as our
policy network, which is lightweight (shown below) and can

be executed on Jetsons as shown below, the parameter count
for the policy network trained in Table. 6.

7.7. Discussion of Limitations and Future Work
Our experiments are conducted on datasets of human actu-
ation and activities. Ideally, it would be interesting to see
the deployment of planned and optimized policies on real
humanoid robots with similar multi-sensory capabilities. Be-
cause we currently do not have such hardware setup that
enables dense force readings on human-hand-like robotic
hands or various other fine-grained interoceptive modalities
on humanoid robots. We leave this direction for a future
research.

There are other passive exteroceptive senses that can be
combined with vision, such as depth, 3D and audio etc. One
can directly leverage a multi-branch visual-audio or visual-
depth UNet diffusion model as the backbone to achieve
such multi-modal experoception responses. However, due to
limited availability of such data, we leave this direction as
future work.

Additionally, because of limited computational resources,
we limit our video diffusion model to be very low resolution.
However, one can employ upsampling approaches to map
low-resolution video predictions to higher resolution. Our
work is less concerned with the specifics of image quality but
more with the application of using multi-sensory interocep-
tion data. Therefore, we leave the study of low-cost video
upsampling or better video diffusion backbone as future
work.

7.8. Additional Experiments and Discussion
7.8.1. Text as addition to multisensory actions
We are also interested in learning whether multi-sensory
action can entirely replace text as condition. We integrate
an additional text-encoder head to the MoE feature encod-
ing branches to incorporate simple text phrases, e.g. cut
potato. The encoded text features are aggregated with
other multi-sensory action features in the same manner as
described in Sec. 2.1. We use the pretrained OpenClip [28]
text encoder to encode text in all baselines and our model.

As depicted in the bottom half of Figure. 7, when mul-
tiple objects (pan and plate) appear in context image and
when the action trajectory can be applied to both objects, the
network is uncertain about which object to apply the action.
It cleans the plate instead of the pan. When we add text
description clean pan as an extra piece of information,
ambiguity is removed and accurate video can be generated.
We also observe that when the context frame is not am-
biguous, multi-sensory action provides enough information
to generate accurate video trajectories. Adding additional
text feature induces a temporal smoothing effect generating
similar images across frames.



Figure 11. Additional pipeline figure.

module parameter count float16 in MB float32 in MB

policy network (to be deployed on edge devices) 120690484 241MB 482 MB

Table 6. Parameter Count for the policy network model used in Downstream application section.

Hardware Type NVIDIA Jetson Nano Jetson Xavier Jetson Orin NX Jetson AGX Orin RTX 4090 H100

Throughput (FPS) 166 ⇠ 111 415 ⇠ 290 1,725 ⇠ 1,293 2,555 ⇠ 1,916 26,528 ⇠ 19,896 315,141

Latency (ms) 6.6 ⇠ 9.2 2.4 ⇠ 3.44 0.57 ⇠ 0.77 0.39 ⇠ 0.52 0.037 ⇠ 0.050 0.00317

Energy Cost(J) 0.06 ⇠ 0.09 0.036 ⇠ 0.051 0.0114 ⇠ 0.0154 0.0195 ⇠ 0.026 0.01665 ⇠ 0.02250 0.02219

Table 7. Table shows that the trained policy can be deployed onto Edge devices.

Method MSE # PSNR " LPIPS # FVD #

No hand pose 0.138 14.1 0.314 264.0
No hand force 0.129 14.5 0.317 256.3
No body pose 0.137 14.5 0.322 273.1
No muscle EMG 0.121 15.2 0.311 217.1

All sensory used 0.110 16.0 0.276 203.5

Table 8. Training with ablated modalities

7.8.2. Additional results on training with missing modal-
ities

We first ablate different sensory signal input, when training
our video simulator. We observe that body pose is crucial for
larger motions that involve moving in space such as turning
or walking. For more delicate manipulations such as cutting
or peeling, hand poses and haptic forces get us most of the
way. Results in Table 8 suggests that contribution of muscle
EMG is minimal. A closer look into the dataset reveals that
muscle EMG is highly correlated with hand force magnitude,
but it provides extra information in scenarios where hands
are fully engaged.

7.8.3. Additional results on test-time robustness
As we see from the Table. 9 that when one modality is
provided, our model can still produce higher prediction accu-

Table 9. Testing with single modality available

Method MSE # PSNR " LPIPS # FVD #

Hand pose 0.121 14.6 0.309 210.2
Hand force 0.117 14.7 0.307 208.0
Body pose 0.123 14.6 0.310 210.5
Muscle EMG 0.132 13.9 0.312 214.8

All sensory used 0.110 16.0 0.276 203.5

racy compared to text-based models or single-model models.
Comparing this result with Table. 1 shows that our proposed
multsensory action trainiing strategy induces higher quality
action feature compared to training with a single modality.
This comparison indicates that through implicit association
between different modalities, both feature alignment and
information presevation is achieved. That is, the complemen-
tary information is preserved in the feature representation
such that when only one action modality is provided, the
model might have access to commonly co-activated feature
dimensions and thus produce better result than training with
single modality.

To provide a comprehesive set of ablation studies on test-
ing with missing modalities, we show Table 10 that includes
all possible pairs of modalities used during testing. The re-
sults in Table. 10 along with Table. 9 and Table. 3a makes a



comprehensive study cross all possible ablated experiments.
We can from Table.10, that the model achieves better perfor-
mance when different aspect of information is provided.

Table 10. Testing with paired modality available

Method MSE # PSNR " LPIPS # FVD #

Hand Pose and Hand Force 0.115 14.9 0.304 206.4
Body Pose and Muscle EMG 0.122 14.6 0.309 210.1
Hand Force and Muscle EMG 0.117 14.7 0.307 207.6
Hand Pose and Body Pose 0.113 15.0 0.297 206.2

All sensory used 0.110 16.0 0.276 203.5

7.8.4. Comparison between Training and Testing with
Ablated Modalities

The critical difference between the above two experiments,
training with ablated modalities (Table. 8) and testing with
missing modalities (Table. 3a) is the modalities used during
training. The latter ablation experiment, testing with miss-
ing modalities, employs a model trained with all modalities,
whereas the former is trained only on a subset of modali-
ties. Comparing the performance decrease in Table. 8 and
Table. 3a, we can see that the latter experiment, testing with
missing modalities, induces very minimal drop in predic-
tion accuracy. This comparison confirms the advantage of
training on multimodal action signals. We believe that this
test-time robustness is induced by channel-wise attention
and channel-wise softmax module, as these design choices
allows the model to leverage substitutional information in
the given modalities to bridge different modalities to allow
for robustness during inference.

7.8.5. History Horizon.
Finally, we study the effect of history horizon length on our
model with comparison to text-conditioned simulation. We
follow prior works [71] to compare context frame length
h(x)=4 and h(x)=1, shown in Table 11. We can see that
increased history frame length reduces prediction error for
all methods. Additionally, our proposed multisensory action
condition is temporally fine-grained, which allows the cross
attention between action and observation history h(x, a) = 4
to help further increase simulation accuracy.

7.8.6. Cross Subject Testing
We report the cross subject testing, where we use three other
different subjects for testing and training with the rest using
the ActionSense dataset, result can be found in Table. 12.

7.8.7. Examples of fine-grained control
We can see from Fig. 12 where hand force together with
hand pose helps accurately controls the timing of the hand
grabbing the pan.

Method MSE # PSNR " LPIPS # FVD #

Unisim h(x) = 1 0.177 12.7 0.408 674.9
Unisim h(x) = 4 0.118 14.6 0.321 275.9
Ours h(x) = 1 0.142 12.9 0.362 535.1
Ours h(x, a) = 1 0.138 12.7 0.356 529.1

Ours h(x) = 4 0.114 15.4 0.306 256.3
Ours h(x, ah) = 4 0.110 16.0 0.276 203.5

Table 11. Effects of history horizon length

Table 12. Cross Subject Testing

Method MSE # PSNR " LPIPS # FVD #

subject 2 0.115 15.8 0.301 206.7
subject 4 0.112 16.0 0.282 204.6
subject 5 0.110 16.0 0.276 203.5

Fine-grained difference in same task

GT

Our

GT

Our

Context Frames: t=0 → t=3                                                                   Predicted Frames: t=4 → t=11

Figure 12. Temporally fine-grained control

7.8.8. Additional Experiment on Generalization to OOD
data through Finetuning

We present a second experiment to demonstrate that our
method can handle specific out-of-distribution (OOD) sce-
narios through fine-tuning. For this experiment, we modified
the original ActionSense dataset to create OOD data. Using
LangSAM, we extracted segmentation masks for "potatoes"
and recolored them to appear as "tomatoes." Since the video
model had not encountered red vegetables or fruits during
training, we fine-tuned our pretrained model on a small
dataset of approximately 600 frames (30 seconds) and eval-
uated it on the test split of this "tomato" data. The data
creation procedure is shown in Fig. 13 and results on this
experiment can also be found in 14. The results show that
the model achieves reasonable performance after fine-tuning.
While we acknowledge that robust in-the-wild generaliza-
tion requires training on larger-scale datasets with diverse
domain coverage, this experiment illustrates a practical use



case for addressing OOD data. Specifically, it demonstrates
that by collecting a small, specialized dataset, our pretrained
model can be effectively fine-tuned to adapt to new domains.

7.8.9. Additional discussion and results on downstream
application

Sample results visualization can be found in Fig. 15. We
also observe from the figure that the policy optimized by
our proposed approach can be different from the ground
truth action trajectory, yet the simulated visual observations
still closely resemble the ground truth state observations.
We believe that the softmax aggregation learns to pick out
information deemed useful by the simulator, leaving freedom
in irrelevant dimensions in the action space.

7.8.10. Downstream Application2: Multi-Sensory Action
Planning

Another potential downstream application is long-term plan-
ning. Inspired by [17], we use text to describe high-level
goals to generate a set of executable next-step actions. Our
video model takes an image observation and the generated
actions to simulate future image sequences, which can be
further evaluated for next-step execution planning. As shown
in Fig. 15, our model can potentially be used for low-level ac-
tuation planning through iterative action roll outs. We adapt
diffusion policy (DP) [9] to take in both first frame image
feature x0 and high-level goal � described by a text feature
f� as the context conditions to generate multi-sensory trajec-
tories of fine-grained actions a[1,T ] = p(x0, f�). The action
steps are then fed into our action-conditioned video genera-
tive model g(·) to generate sequences of future video frames
x̂[1,t] = g(x0, a[1,t]). To decide whether the subtask ⌧ has
been achieved, we use a vision language model fv(·) as a
heuristic function [48], which can be promted with the end
state of the current roll out x̂t to evaluate whether subgoal ⌧
has been achieved. If more steps are needed, we can further
iterate the process a[t,it] = p(x̂t, �), x[t,it] = g(x̂t, a[t,it]).
A sample result from text-promted diffusion policy is shown
in Figure. 15. We observe long iterations result in accumula-
tive error, as shown in the bottom row of Fig. 19 in Appendix
Sec. 7.8). A larger-scale dataset can further boost perfor-
mance for this task. This downstream application hints at
fully automated low-level motion planning and dexterous
manipulation, enabling realization of household robots.

7.8.11. Higher Resolution Results
We include some sample results for higher resolution model
of video size 128⇥ 128⇥ 12 and 192⇥ 192⇥ 12, matching
the video resolution of existing generative video simulation
paper, such as Unisim [71]. The results are shown in Fig. 18

7.8.12. Additioanl qualitative results on other dataset
To show that our proposed method is generic is not designed
for the ActionSense [13] dataset, we conducted an experi-

ment by directly applying our proposed approach on another
dataset, H2O dataset [34]. H2O [34] dataset is a unimodal
action-video dataset that includes paired video and hand
pose sequences. We would love to expand our our training
on larger and more diverse dataset, However, to the best of
our knowledge, ActionSense [13] is the only dataset that
includes paired multisensory action signal monitoring se-
quences alongside video sequences. We show experiment on
H2O [34] in Figure 16. We provide additional sample test on
the holoAssist dataset 17, which is also a hand-pose video
dataset in Fig. 16. These results demonstrate that our system
is generic, not dataset specific, and can achieve reasonable
performance. These results indicate that our model is capable
of training and testing on unimodal action datasets, highlight-
ing its generalizability beyond the ActionSense dataset. This
demonstrates that our method is not specifically tailored to
ActionSense and can adapt to various scenarios. We believe
our proposed method offers a generalizable framework that
can serve as a reference and can be applied more broadly as
additional datasets of this nature become available.

GT

Pred

GT

Pred

Figure 17. Test on HoloAssist dataset

7.9. Additional Qualitative Results
Additional Qualitative Results are shown in Fig. 19, Fig. 20,
and Fig. 21. Fig. 19 and Fig. 20 show additional qualitative
results of context frames and predicted video frames from
our proposed multisensory action signals. Fig. 21 shows
demonstrations of failure cases, policy optimization, and
long-trajectory planning. We show one most recent context
frame and the eight predicition frames. Fig. 21 shows results
paired in two rows, where the top row shows ground truth
trajectory the bottom row shows predicted trajectory.

7.9.1. Failure Cases
We show the failure cases on the top right section. Com-
mon failure cases include false hallucination of environment
with large motion. Failure to identify object with similar
apperance to background. The wooden chopboard gradually
disppear into the wooden table background and fails to pick
it up in simulation. Failure in identify object to act on (also
hallucates pan handle on plate and cleaning the plate). The
last five rows in Fig. 19 show additional results on down
stream tasks of policy planning, shown in the middle rows,
and long-trajectory simulation, show in the bottom row.
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Figure 13. Experimental set up on OOD testing.
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Figure 14. Experimental results on OOD testing.
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Figure 15. Left: Results on goal-conditioned policy optimization. Right: Results on long-term task planning.
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Figure 16. Test on H2O dataset
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Figure 19. Additional qualitative results



Figure 20. Additional qualitative results



Figure 21. Top left: Additional qualitative results. Top right: Failuare cases. Middle left and right: Additional results on policy
optimization. Bottom: long-trajectory policy planning.


	Introduction
	Simulating Multi-Sensory Interactions
	Multi-Sensory Action Representation
	Context-Aware Latent Interaction
	Conditioning Generative Visual Simulator

	Experiments
	Conditioning Action Modalities
	MultiModal Feature for Generative Simulation
	Ablation Experiments

	Downstream Applications
	Conclusion
	Acknowledgement
	Appendix
	Disclaimer
	Notation Chart
	Related Work
	Implementation Details
	Additional Pipeline Figure
	Model Size
	Discussion of Limitations and Future Work
	Additional Experiments and Discussion
	Text as addition to multisensory actions
	Additional results on training with missing modalities
	Additional results on test-time robustness
	Comparison between Training and Testing with Ablated Modalities
	History Horizon.
	Cross Subject Testing
	Examples of fine-grained control
	Additional Experiment on Generalization to OOD data through Finetuning
	Additional discussion and results on downstream application
	Downstream Application2: Multi-Sensory Action Planning
	Higher Resolution Results
	Additioanl qualitative results on other dataset

	Additional Qualitative Results
	Failure Cases



