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Supplementary Material

A. Additional Details of SoulDance Dataset
In Figure 5, we illustrate the relationships among dance
genres, the number of dancers, and each dancer’s proportion
within the dataset. Figure 8 showcases various music-dance
motions from different styles in the SoulDance dataset. The
body and hand movements demonstrate remarkable diver-
sity and precision, further enhanced by expressive facial
motions, making the dances more dynamic and emotionally
engaging.
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Figure 5. Overview of the distribution of the SoulDance
dataset. (a) shows the distribution of dance sequences by dancer
count (1–5), with most sequences featuring solo performances. (b)
depicts the proportion of dance duration for each dancer (A-E). (c)
illustrates the distribution of dance sequence counts per dancer.
(d) displays the number of dance genres and the count of dance
sequences per genre for each dancer.

B. Body-Hands Motion Refinement
The majority of existing datasets focus on body move-
ment, typically utilizing 24 body joints from the SMPL
model [37]. In contrast, our dataset captures detailed
holistic dance motion, requiring the use of the SMPL-X
model [39], which includes 22 body joints, 30 hand joints
and is compatible with FLAME [35] parameters for facial
expressions. As shown in Figure 1, once the body move-
ment and hand gesture BVH data is acquired, we employ
MotionBuilder [3] and Unreal Engine 5 [10] to retarget mo-
tions to the SMPL-X format. Throughout the retargeting
process, we implement a workflow within Unreal Engine 5,
including T-pose adjustments, bone length calibration, and

joint name mapping to ensure precise alignment. When nec-
essary, our team of engineers performs manual refinements
to correct any non-physical joint behaviors, further enhanc-
ing the authenticity of the retargeted motions.

C. Transforming Face Blendshapes to FLAME

We follow the method introduced in EMAGE [36] to con-
vert ARKit blendshape weights into FLAME parameters.
Given the ARKit blendshape weights bARKit ∈ RT×52, we
aim to derive a transformation matrix W ∈ R52×103 to
map these into FLAME parameters bFLAME ∈ RT×(100+3),
where the dimensionality of 100 corresponds to expression
parameters, and 3 represents jaw movements. We leverage
a set of handcrafted blendshape templates vt ∈ R52 on the
FLAME model, structured according to ARKit’s Facial Ac-
tion Coding System (FACS) configuration. This setup en-
ables direct control of the FLAME topology vertices v us-
ing the blendshape weights:

v = v0
t +

52∑
j=1

bARKit,j · vj
t , (10)

where bARKit,j is the weight of the j-th ARKit blend-
shape, and vj

t is the FLAME template vertex position. The
term v0

t denotes the initial template vertex positions in the
FLAME model. We optimize W by minimizing the Eu-
clidean distance ∥ṽj − vj∥2, where ṽ represents vertices
derived from FLAME’s Linear Blend Skinning (LBS) func-
tion V(bFLAME).

D. Holistic Dance Motion Representation

Following the HumanML3D format [17] and Human-
Tomato format [38] for motion representation, we represent
the holistic motion at each frame mi as a tuple contain-
ing various motion attributes. Specifically, we define mi

by the root angular velocity ṙa ∈ R along the Y-axis, root
linear velocities ṙx, ṙz ∈ R on the XZ-plane, root height
ry ∈ R, local joint positions jp ∈ R3N−3, 6-DOF joint
rotations [61] jr ∈ R6N−6, joint velocities jv ∈ R3N ,
and foot contact indicators ċ ∈ R4. Here, N = 52 rep-
resents the total number of body-hand joints, utilizing 22
body joints and 30 hand joints as defined in the SMPL-X
model [39]. For facial motion, we adopt the FLAME for-
mat [25], using f ∈ R100 to represent facial expressions.
Thus, each frame’s whole-body motion is represented as
mi = {ṙa, ṙx, ṙz, ry, jp, jr, jv, ċ, f}, with a total dimension
of 723.



E. Dance Reconstruction Evaluation Metrics

During HRVQ training, it is essential to evaluate the recon-
struction quality of dance. While body and hand move-
ments can be assessed using the standard MPJPE [28], it
fails to capture the accuracy of facial reconstruction. To ad-
dress this, we introduce the Face Vertex Error (FVE), which
quantifies the deviation of reconstructed facial sequences
from the ground truth [11, 55]. FVE is computed by mea-
suring the Euclidean distance between the ground truth and
reconstructed facial vertices for each frame, then averaging
these distances over the entire sequence:

FVE =
1

N

N∑
i=1

√√√√ V∑
j=1

(vj − ṽj)2 (11)

where vj represents the ground truth positions of the facial
vertices, and ṽj denotes the corresponding vertices recon-
structed by HRVQ. The metric is averaged over N frames
to evaluate facial reconstruction quality.

F. Additional Qualitative Results

Comparison with SOTA Methods. SoulNet demonstrates
exceptional qualitative performance on both the AIST++
and SoulDance datasets. In Figure 10, FACT [31] gener-
ates dance sequences where, after the initial two seconds,
body and hand movements become mostly static, and fa-
cial expressions are entirely absent. EDGE [52] produces
convincing body movements but often fails to generate de-
tailed hand motions and lacks expressive facial output. Bai-
lando [49] captures body movements and facial expres-
sions effectively but suffers from joint dislocations during
turns and inadequate hand generation. FineNet [32] deliv-
ers satisfactory dance and hand motions but struggles with
fine hand articulation and facial expressiveness. In con-
trast, SoulNet not only generates diverse and dynamic body
movements but also excels in capturing intricate hand and
facial details. As shown in Figure 9, on the AIST++ dataset,
SoulNet achieves superior alignment with the musical beat
and demonstrates greater diversity in generated dance se-
quences compared to other methods.
Generating Diverse Dances. SoulNet is used to gener-
ate three dance fragments from the same music clip. As
illustrated in Figure 11, the generated dances exhibit signif-
icant diversity and richness in movement while maintaining
alignment with the input music genre, showcasing the ex-
cellent multimodal capabilities of our method.
Comparison of Different VQ Methods. Figure 7 presents
a comparison of dance motion reconstruction for a ground
truth sequence using three quantization methods—HRVQ,
RVQ, and VQ—all configured with a codebook size of 512.
The results clearly demonstrate that HRVQ outperforms the

other methods across all key aspects, including body re-
construction (rows 1 and 3), hand gestures (row 2), and fa-
cial expressions (row 4). Furthermore, Figure 6 shows that
HRVQ produces the most stable and consistent dance se-
quences, followed by RVQ, with VQ performing the worst.
These findings underscore HRVQ’s superior ability to cap-
ture fine-grained and expressive dance motions, signifi-
cantly surpassing RVQ and VQ in reconstruction quality.
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Figure 6. Comparison of Visualization Results. We visualize the
dance generation results on the SoulDance dataset using different
methods. The dashed line represents the motion trajectory along
the direction of gravity, where smaller fluctuations indicate more
stable generated dance motions.

G. Implementation Details.

For HRVQ, we employ residual blocks for both the encoder
and decoder, with a downscale factor of 4. Each vector
quantizer consists of 6 layers, with each layer’s codebook
containing 512-dimensional codes. The transformation pro-
cess uses a MLP and a 1D convolution. The quantization
dropout ratio, q, is set to 0.2. For MAGM, we use 6 trans-
former layers and 6 residual transformer layers, with 8 at-
tention heads and a latent dimension of 512. The learning
rate reaches 2× 10−4 after 2000 iterations, following a lin-
ear warm-up schedule for training all models. The batch
size is set to 256 for training HRVQ and 64 for training
MAGM. During inference, we apply a classifier-free guid-
ance (CFG) scale of 4 and 5. For training MMR module, we
use the AdamW optimizer with a learning rate of 1× 10−4

and a batch size of 32. The latent dimensionality of the em-
beddings is set to d = 256. We set the temperature τ to 0.1,
and the weight for the InfoNCE loss to 0.1. The threshold
for filtering negatives is set to 0.8. All experiments are con-
ducted on 4 NVIDIA V100 GPUs, and the whole process is
completed within three days.
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Figure 7. Visualizes dance motion reconstruction on the SoulDance dataset. From left to right, the columns represent the ground truth
(GT), HRVQ, RVQ, and VQ results, respectively.

H. Training: Music-Motion Retrieval Module

Dataset. To establish robust dance-music alignment
priors, we gathered high-quality open-source music-
dance datasets: AIST++ [31], Finedance [32], Phantom-
Dance [30], and SoulDance (totaling 25 hours). Following
the preprocessing protocol of EDGE [52] with default tem-
poral segmentation parameters, we derive two specialized

motion representations for training distinct Music-Motion
Retrieval modules. For Body-Alignment MMR, all se-
quences are processed using the HumanML3D [16] mo-
tion representation (Dm = 263). For Whole-Alignment
MMR, SoulDance dataset is reformatted via our Holistic
Dance Representation (Appendix D, Dm = 723), encoding
holistic motion movements. Finally, all datasets are parti-
tioned into training/validation/test splits (8:1:1 ratio) using



a stratified strategy that preserves music genre and dance
style distributions.
Technical Details. Crucially, we enforce temporal align-
ment constraints between SoulNet and MMR training sub-
sets within AIST++ and SoulDance to prevent data leak-
age—ensuring no overlapping music clips or motion seg-
ments exist across models. Two specialized MMR mod-
ules, MMRbody and MMRwhole, are pre-trained to provide
supervisory signals for the respective losses. MMRbody
is trained on body-only motion data from public datasets
(AIST++ [31], FineDance [32]], PhantomDance [30]) us-
ing a 263-dimensional motion representation (Dm = 263).
In contrast, MMRwhole is trained on a subset of SoulDance
holistic motion data (including body, hands and face) with
a 723-dimensional representation (Dm = 723).
Training Details. We adopt the same encoder and decoder
architectures as TEMOS [41] for training our MMR mod-
ule, with modifications applied only to the encoder dimen-
sions, while keeping the decoder parameters unchanged.
Implementation details are consistent with TMR [42]. For
optimization, we use the AdamW optimizer with a learn-
ing rate of 10−4 and a batch size of 128, as batch size is
a critical hyperparameter for the InfoNCE loss. The latent
embedding dimensionality is set to d = 256, with the tem-
perature τ set to 0.1 and the weight of the contrastive loss
term λNCE set to 0.1. The threshold for filtering negative
samples is configured at 0.8.
Experiments. We conducted both qualitative and quantita-
tive experiments to evaluate the performance of the MMR
module. As shown in Table 8, MMR demonstrates excep-
tional retrieval capabilities. Visualized retrieval results fur-
ther validate this observation. For comparison, we provide
two music samples, each paired with two high-similarity
dance sequences and two low-similarity dance sequences.
Figure 12 and the demo examples illustrate that our retrieval
results align better with the beat and rhythm. In these exam-
ples, higher similarity scores indicate a stronger correlation
between the music and the retrieved dance motions.

Retrieval Task R@1 ↑ R@2 ↑ R@3 ↑ R@5 ↑ R@10 ↑ MedR ↓

Music-Motion Retrieval 42.04 56.95 64.93 73.94 84.62 2.00
Motion-Music Retrieval 42.00 57.52 65.62 74.48 84.22 2.00

Table 8. Retrieval results on the dance dataset. Both Music-
Motion Retrieval and Motion-Music Retrieval tasks maintain Re-
call@1 performance above 40%.

Supervised MAGM. The pretrained MMR module pro-
vides music-motion alignment supervision for the MAGM
dance generation pipeline. A critical challenge arises from
the discrete token inputs to MAGM, while the MMR’s
alignment losses LAlign-body and LAlign-whole require contin-
uous motion representations for contrastive learning. How
can we bridge this gap and enable gradient propagation
through the non-differentiable process? As illustrated in

Fig. 3, we address this issue in three steps. First, the dis-
crete discrete tokens are decoded into continuous motion
sequences M ∈ RT×Dm via the hierarchical residual vec-
tor quantization decoder Dwhole; second, the reconstructed
motion M is encoded through the MMR’s motion encoder
Emotion to obtain latent code z, enabling the computation
of InfoNCE loss with music features c; and third, to en-
able end-to-end training despite discrete token sampling, we
employ Gumbel-Softmax relaxation [21] during token gen-
eration, which provides a continuous approximation of the
discrete sampling process and allows gradient flow through
the otherwise non-differentiable quantization step, with the
temperature parameter τ annealed during training to pro-
gressively sharpen the distribution.

I. User Study Details
A/B videos are randomly sampled clips from different
datasets or generated by different methods, presented to
users for comparison and evaluation. As shown in Fig-
ure 14, after watching dance videos A and B, participants
were asked to answer the following questions:
• Please rate A/B based on your level of preference.
• Considering only the body movements of A/B, please rate

based on your level of preference.
• Considering only the hand movements of A/B, please rate

based on your level of preference.
• Considering only facial expressions, how well does A/B

convey the emotional tone of the music? Please rate.
• How well does A/B align with the rhythm of the music?

Please rate.
We conducted a user study on the dance datasets, select-

ing four different music genres from the SoulDance dataset.
For each genre, a random music-dance sequence was cho-
sen and compared with sequences of the same genre from
the AIST++ [31] and FineDance [32] datasets. Participants
were then asked to rate various performance aspects for
each comparison.

In addition, we performed a user study on different
dance generation methods. Under identical music condi-
tions, we conducted pairwise comparisons between results
generated by SoulNet and those produced by FACT [31],
Bailando [49], EDGE [52], FineNet [32] and ground truth.
Participants rated different aspects of each generated dance
sequence. Training and generation were carried out sepa-
rately on both the AIST++ [31] and SoulDance datasets.
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Figure 8. Showcase of various dance styles in the SoulDance dataset. The SoulDance dataset demonstrates high motion quality and
diversity across multiple dance styles.
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Figure 9. Qualitative generation result comparisons for a Rock song in the AIST++ dataset.
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Figure 10. Qualitative generation result comparisons for a Pop song in the SoulDance dataset.



Figure 11. Diversity of generated dances. The SoulNet method demonstrates rich diversity under identical input music of the Chinese
Style genre, encompassing variations in body movements, hand gestures, and facial expressions.
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Figure 12. Qualitative results of Music-Motion Retrieval. For the Pop music genre, higher similarity scores indicate greater correspon-
dence between the retrieved dance motions and the input music.



Figure 13. Screenshot of video page in the user study. The
interface provides independent A/B video links, allowing users to
view each corresponding video separately.

Figure 14. User interface of our surveys. The interface presents
a set of questions alongside two videos, A and B. Screenshots of
the videos linked in the survey are shown in Figure 13.


