
NATRA: Noise-Agnostic Framework for Trajectory Prediction with Noisy
Observations

Supplementary Material

6. Appendix
6.1. More analysis of NATRA
Performance under low/no noise settings. We evaluate
NATRA under low or no noise by setting the Gaussian noise
σ to 0.05 and 0. The results presented in Table 7 indicate
that after integrating NATRA into EqMotion, the perfor-
mance is still superior to baselines when at a low noise level
(σ = 0.05). Additionally, NATRA+EqMotion performs
comparably to EqMotion when σ = 0. This demonstrates
NATRA does not degrade the performance when noise is
not introduced.

Table 7. Comparison of different methods under different noise
setting on the SDD dataset. The evaluation metrics are ADE and
FDE (Unit: pixels). The best results are highlighted in bold.

Noise Method SDD
ADE FDE

σ = 0.05

EqMotion 8.48 13.49
Wavelet+EqMotion 8.39 13.37
EMA+EqMotion 8.42 13.36

NATRA+EqMotion 8.32 13.28

Noise Method SDD
ADE FDE

σ = 0

EqMotion 8.08 13.12
Wavelet+EqMotion 8.16 13.42
EMA+EqMotion 8.22 13.57

NATRA+EqMotion 8.11 13.08

Noise Method ETH/UCY
ADE FDE

σ = 0

GraphTern 0.24 0.38
Wavelet+GraphTern 0.26 0.40
EMA+GraphTern 0.25 0.39

NATRA+GraphTern 0.24 0.37

Performance on diffusion-based backbones. In ad-
dition to GraphTern and EqMotion, we integrate NATRA
into MID, a diffusion-based model for trajectory prediction.
Specifically, we first use TDM to denoise the noisy observa-
tions Xobs, obtaining X̂obs . Then, using both the denoised
and original observations, we sample normal noise from a
standard Gaussian distribution to generate Ŷfut and Ỹfut,
respectively. To optimize the model, We apply Lpred and
Lrank alongside the MID loss . The results shown in Table

Table 8. Comparison with baselines using MID backbone. The
evaluation metrics are ADE and FDE (Unit: pixels). The best
results are highlighted in bold.

Noise Method SDD
ADE FDE

σ = 0.4

MID 12.86 18.35
Wavelet+MID 12.26 17.88
EMA+MID 12.45 18.01

NATRA+MID 11.97 17.41

8 show that NATRA still outperforms the baselines, which
further underscores its adaptability.

Comparison with frozen predictor. We conduct an ex-
periment where we freeze the predictor and only train the
denoiser. We first load the predictor trained on clean obser-
vations, freeze its parameters, and then integrate NATRA,
training only the denoiser. The results, shown in Table 9,
reveal a performance decrease when the predictor’s parame-
ters are frozen. This indicates the necessity of jointly learn-
ing the denoiser and predictor.

Table 9. Comparison with NoiseTraj where the predictor is
freezed. The best results are highlighted in bold

Noise Method SDD
ADE FDE

σ = 0.4
EqMotion 13.46 19.60

NATRA+EqMotion (freeze) 12.19 17.95
NATRA+EqMotion 11.92 17.65

Comparison with Learning-based baseline. To our
knowledge, our work is the first to address trajectory pre-
diction with noisy observations, with no existing learning-
based baselines for this problem. We use Noise2Void [1], a
learning-based denoiser originally for image denoising, as
another baseline. We first denoise the observed trajectories,
and then perform future trajectory prediction based on the
observations. The results in Table 10 of the attached PDF
show that NATRA outperforms Noise2Void, demonstrating
the effectiveness of our method.

Hyper-parameter Analysis. We conducted hyperpa-
rameter analysis for number of masked locations. As shown
in the Table 11, masking 2 trajectory locations achieves the
best performance. This is because too few masked locations
restrict the model’s reconstruction ability, while too many
make accurate recovery challenging.

Table 10. Comparison with baselines on SDD dataset. The eval-
uation metrics are ADE and FDE (Unit: pixels). The best results
are highlighted in bold.

Noise Method SDD
ADE FDE

σ = 0.4

EqMotion 13.46 19.60
Wavelet+EqMotion 12.38 18.25
EMA+EqMotion 12.79 18.64

Noise2Void+EqMotion 12.46 18.52
NATRA+EqMotion 11.92 17.65

Table 11. Analysis of number of masked locations on SDD dataset

Method Noise Mask Num SDD
ADE FDE

NATRA
+GraphTern σ = 0.4

1 12.77 18.01
2 12.35 17.28
3 13.11 18.62
4 13.26 18.88

We also analyse trade-off parameters α, β, γ and δ.
The result listed in Table 12. We conducted analy-
sis on SDD dataset using a grid search over the set
{0.001, 0.01, 0.1, 1.0}. We utilize GraphTern as the back-
bone. The results are listed in the table below, and we select
the best set of hyperparameters as the final configuration for
the model.

Table 12. Hyper-parameter analysis of trade-off α, β, γ and δ on
SDD dataset.

Hyper-
paramter

0.001 0.01 0.1 1.0
ADE FDE ADE FDE ADE FDE ADE FDE

α(LMI) 13.31 19.04 12.35 17.28 13.86 19.74 14.98 21.06
γ(LMI) 13.18 18.69 12.35 17.28 12.47 17.66 12.48 17.62
β(Lrank) 12.67 17.74 12.35 17.28 12.92 18.25 13.06 18.45
δ(Lrec) 12.99 18.62 12.75 18.11 12.39 17.36 12.35 17.28

Analysis of noise at different timestep. We conducted
experiments to evaluate the NATRA’s ability to handle noise
at different timestep. We divide 8-frame observations into
early (first 4 frames), and late (last 4 frames) periods. We
add Gaussian noise N (0, 0.4) to early and late period re-
spectively to construct SDD(early) and SDD(late) dataset
for evaluating NATRA. The experimental results listed in
Table 14 show NATRA can still surpass baselines under
noise at various time steps.

6.2. Training and Inference Time Analysis
We conduct a comparison of computational costs in terms
of training time and inference latency. The results, obtained
using Eqmotion as the backbone and SDD as the dataset, are
listed in the Table ??. Both LMI and Lrec introduce min-
imal overhead during training. The ranking loss (Lrank)

Table 13. Comparison of different methods when noise is different
between training and testing on the SDD dataset. The evaluation
metrics are ADE and FDE (Unit: pixels). The best results are
highlighted in bold.

(a) Training with σ = 0.4, and Testing with σ = 0.2.

Noise Method SDD
ADE FDE

Train:
σ = 0.4

Test:
σ = 0.2

EqMotion 11.47 16.82
Wavelet+EqMotion 10.86 16.07
EMA+EqMotion 10.99 16.24

NATRA+EqMotion 10.72 15.89

(b) Training with σ = 0.4, and Testing with λ = 0.4.

Noise Method SDD
ADE FDE

Train:
σ = 0.4

Test:
λ = 0.4

EqMotion 15.03 19.35
Wavelet+EqMotion 14.40 18.56
EMA+EqMotion 14.57 18.98

NATRA+EqMotion 14.26 18.32

Table 14. Analysis of noise at different timestep on SDD(early)
and SDD(late) dataset.

Method SDD(early) SDD(late)
ADE FDE ADE FDE

GraphTern 10.12 15.36 12.14 17.68
EMA+GraphTern 9.84 15.05 11.37 16.21

Wavelet+GraphTern 9.86 15.12 11.14 16.02
NATRA+GraphTern 9.46 14.48 10.77 15.65

requires an additional forward pass through the backbone,
resulting in increased training time. However, the increase
in inference time is negligible. The 10ms latency is intro-
duced by the trajectory denoising model, while all the losses
are only used during training and do not incur any additional
cost at inference.

Table 15. Analysis of training and inference time on SDD dataset.
The backbone is EqMotion

Method(on Eqmotion) Train(s) Infer(ms)
No denoising 565 73
Wavelet 661 97
Wavelet(Preprocess) 563 73
EMA 632 77
EMA(Preprocess) 571 73
NARTA(LMI) 604 83
NARTA(LMI ,Lrec) 619 83
NARTA(LMI ,Lrec,Lrank) 1119 83

6.3. Generalizability of NATRA
To verify the generalizability of our method, we conduct
additional experiments where the noise in the training and

(a) Results of applying LMI (b) Results of applying
LMI + Lrec

Figure 4. Visualization of trajectories on ETH dataset by employ-
ing (a) LMI and (b) LMI + Lrec. The clean, noisy, and denoised
observations are shown in green, blue, and red, respectively. The
ground-truth and predicted future trajectories are shown in orange
and cyan, respectively.

validation/testing set is different. Specifically, we train the
model using trajectories with Gaussian noise (σ = 0.4) and
then test it with Gaussian noise (σ = 0.2) and Poisson noise
(λ = 0.4). The results, as listed in Table 13, show that our
NATRA can achieve denoising effectively, and still outper-
forms the baselines. This also indicates that our method
possesses generalization ability when noise is different in
the training and testing/validation set.

6.4. Sensitivity to the Amount of Clean GTs.

We conduct experiments to evaluate the sensitivity of NA-
TRA to the amount of clean GT data. Specifically, we train
the model on 0%, 25%, 50%, 75%, and 100% of the ground-
truth trajectories on the SDD dataset. The remaining trajec-
tories are added Gaussian noise N (0, 0.4), consistent with
the noise used in the observed trajectories. The results listed
in the Table 16. Results show NATRA performs comparable
to baselines when using 0% and 25% amount.

6.5. Visualization of Mutual Information-Based De-
noising Mechanism

To further demonstrate the efficacy of the proposed Mutual
Information-Based Denoising Mechanism, we visualize the
denoised trajectory and future predicted trajectory on the
ETH dataset. As shown in Figure 4(a), optimizing solely
for mutual information leads to the destruction of structural
information. However, as depicted in the Figure 4(b), when
we incorporate the reconstruction loss Lrec, the structure
of the trajectory is preserved, and more accurate future tra-
jectory predictions based on these well-structured observa-
tions. This underscores the effectiveness of our proposed
method.

6.6. Training Procedure of NATRA

We provide the training procedure of NATRA in the Algo-
rithm 1.

6.7. Proof of Theorem 3.1
Theorem 6.1 (Theorem 3.1 restated). Given two random
variables x and y, the mutual information I(x; y) has the
following upper bound

I(x; y) ≤ Ep(x,y)[log p(y|x)]− Ep(x)Ep(y)[log p(y|x)]
(19)

Proof. The definition of mutual information between vari-
ables x and y is

I(x; y) = Ep(x,y)
[
log

p(x, y)

p(x)p(y)

]
= Ep(x,y)

[
log

p(y|x)
p(y)

]
= Ep(x,y)[log p(y|x)]− Ep(x,y)[log p(y)]
= Ep(x,y)[log p(y|x)]− Ep(y)[log p(y)] (20)

By the definition of the marginal distribution, we have:

p(y) =

∫
p(y|x)p(x)dx = Ep(x)[p(y|x)]. (21)

By substituting Equation (21) to , we have:

I(x; y) = Ep(x,y)[log p(y|x)]− Ep(y)[log p(y)]
= Ep(x,y)[log p(y|x)]− Ep(y)[logEp(x)[p(y|x)]]

(22)

Note that the log(·) is a concave function, by Jensen’s In-
equality, we have

−Ep(y)[logEp(x)[p(y|x)]] ≤ −Ep(y)Ep(x)[log p(y|x)]
= Ep(x)Ep(y)[log p(y|x)] (23)

By applying this inequality to Equation (22), we obtain:

I(x; y) = Ep(x,y)[log p(y|x)]− Ep(y)[p(y)]
= Ep(x,y)[log p(y|x)]− Ep(y)[logEp(x)[p(y|x)]]
≤ Ep(x,y)[log p(y|x)]− Ep(x)Ep(y)[log p(y|x)]

(24)

Table 16. Sensitivity to the amount of clean GT data.

Method(on Eqmotion) 0% 25% 50% 75% 100%
No Denoising 14.96/20.88 14.38/20.45 14.01/20.03 13.69/19.37 13.46/19.60
Wavelet 14.76/20.31 13.94/19.62 13.34/18.97 12.85/18.52 12.38/18.25
EMA 14.87/20.65 14.01/19.96 13.45/19.34 13.03/18.84 12.79/18.64
NARTA 14.92/20.69 14.11/19.62 13.29/18.72 12.53/18.15 11.92/17.65

Algorithm 1: Training Procedure of NATRA
Input: Noisy observations Xobs, ground-truth future trajectories Yfut. Four trade-off hyper-parameters: α, β, δ and

γ.
Output: Network parameters: ΦTDM, ΦTPB, ψ, and ϕ.
Initialize: Randomly initialize ΦTDM, ΦTPB, ψ, and ϕ.
while Model not converges do

Random mask the noisy observations using the mask vector: Xmask
obs = Xobs ⊙Mobs

Obtain the trajectories X̂mask
obs = ΦTDM(Xmask

obs)

Calculate reconstruction loss Lrec = ||X̂mask
obs ⊙ (1−Mobs)−Xobs ⊙ (1−Mobs)||2

Input noisy observations to ΦTDM for denoising: X̂obs = ΦTDM(Xobs)
Employ Mutual Information-based mechanism for further denoising:
LMI = αEp(Xobs,X̂obs)[log qϕ(X̂obs|Xobs)]− Ep(Xobs)Ep(X̂obs)[log qϕ(X̂obs|Xobs)]

− sup
ψ

Ep(X̂obs,Yfut)[Tψ] + logEp(X̂obs)p(Yfut)[e
Tψ]

Obtain the future predictions based on denoised observations: {Ŷ kfut}Kk=1 = ΦTPB(X̂obs)

Obtain the future predictions based on noisy observation: {Ỹ kfut}Kk=1 = ΦTPB(Xobs)
Calculate ddenoise and dnoise:
ddenoise = min

1≤k≤K
||Ŷ kfut − Yfut||2, dnoise = min

1≤k≤K
||Ỹ kfut − Yfut||2

Calculate Lpred and Lrank as
Lpred = ||Ŷ bestfut − Yfut||2 + ||Ỹ bestfut − Yfut||, Lrank = max(0, ddenoise − dnoise +∆)

Optimizing L = Lpred + βLrank + δLrec + γLMI by gradient descent to update the ΦTDM and ΦTPB.
end

6.8. Proof of Theorem 3.2

Theorem 6.2 (Therorem 3.2 restated). Given two proba-
bility distributions P, Q. The Kullback Liebler Divergence
admits the following dual representation:

DKL(P||Q) = sup
T :Ω→R

EP[T]− logEQ[e
T], (25)

Proof. The proof comprises two steps. Firstly, we prove the
existence of the supremum in the dual representation. Sub-
sequently, we demonstrate that this representation serves as
the lower bound of the Kullback-Liebler Divergence.

Lemma 1. There exist a function T ∗ : Ω → R, such that:

DKL(P||Q) = EP[T
∗]− logEQ[e

T∗
] (26)

Proof. We choose a function T ∗ = log P
Q , then we have:

EP(T
∗)− logEQ[e

T∗
] = EP

[
log

P(ω)
Q(ω)

]
− logEQ[e

log
P(ω)
Q(ω)]

(27)

= DKL(P||Q)− logEQ

[
P(ω)
Q(ω)

]
(28)

= DKL(P||Q)− log

∫
Ω

Q(ω)
P(ω)
Q(ω)

dω

(29)

= DKL(P||Q)− log

∫
Ω

P(ω)dω

(30)

= DKL(P||Q)− log 1 (31)
= DKL(P||Q) (32)

Lemma 2. For any function T : Ω → R, the following

equality holds:

DKL(P||Q) ≥ EP[T]− logEQ[e
T] (33)

Proof. We define the probability density function G as:

G(ω) ≜
Q(ω)eT

EQ[eT]
(34)

Note that G satisfies the non-negativity and the inte-
gral of its probability density function (PDF) over the input
space equals 1:∫

Ω

G(ω)dω =

∫
Ω

Q(ω)eT

EQ[eT]
dω =

∫
Ω

EQ[e
T]

EQ[eT]
dω = 1 (35)

Then, we calculate the difference between the two sides of
33 to obtain:

DKL(P||Q)− EP[T] + logEQ[e
T]

= EP

[
log

P(ω)
Q(ω)

− T

]
+ logEQ[e

T] (36)

= EP

[
log

P(ω)
Q(ω)eT

+ logEQ[e
T]

]
(37)

= EP

[
log

P(ω)EQ[e
T]

Q(ω)eT

]
(38)

= EP

[
log

P(ω)
G(ω)

]
(39)

= DKL(P||G) ≥ 0 (40)

Based on the Lemma 1 and Lemma 2, we show that by
choosing T ∗ = log P

Q , we obtain:

DKL(P||Q) = EP[T
∗]− logEQ[e

T∗
] (41)

Additionally, for any function T : Ω → R,

DKL(P||Q) ≥ EP[T]− logEQ[e
T] (42)

holds. Hence,

DKL(P||Q) = sup
T :Ω→R

EP[T]− logEQ[e
T], (43)

6.9. Implementation Details
The trajectory denoise model ΦTDM is implemented using a
3-layer Transformer with a feature dimension of 256 and the
attention head is set to 4. The number of masked locations is
set to 2 in our experiments. We empirically set the trade-off
parameter β to 0.01 and the margin ∆ to 0.05. Addition-
ally, we set the trade-off parameters α, δ, and γ to 0.01, 1
and 0.01, respectively. For the Wavelet denoising method,

we utilize the Daubechies wavelet to decompose the sig-
nals, and the level is set to 2. We employ the soft-threshold
method, with a threshold value set to 0.2. Regarding the
EMA method, we empirically determine the weighted pa-
rameter to be 0.75. All experiments are conducted on the
PyTorch platform with 4 NVIDIA RTX3090 GPUs.

Reference
[1] Krull, Alexander, Tim-Oliver Buchholz, and Florian
Jug. Noise2void-learning denoising from single noisy im-
ages. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp.2129-2137, 2019.

	Introduction
	Related Works
	Trajectory Prediction with Clean Observations
	Robust Trajectory Prediction

	Methods
	Problem Formulation
	Overall Framework
	Trajectory Prediction with Noisy Observations
	Mutual Information-Based Denoising Mechanism.
	Trajectory Prediction Based on Ranking Loss.

	Optimization and Inference

	Experiments
	Experiment Settings
	Results and Analysis

	Conclusion
	Appendix
	More analysis of NATRA
	Training and Inference Time Analysis
	Generalizability of NATRA
	Sensitivity to the Amount of Clean GTs.
	Visualization of Mutual Information-Based Denoising Mechanism
	Training Procedure of NATRA
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Implementation Details

