
A. Supplementary Material
A.1. Datasets
CIFAR10 [42] is widely used for image classification.
It contains 10 classes with 60, 000 images (50, 000 for
training and 10, 000 for testing). Its small resolution
(32 ⇥ 32 pixels) and balanced class distribution make it a
common benchmark for evaluating adversarial robustness.
CIFAR10 has significantly fewer classes and a lower level
of visual complexity compared to ImageNet21-k. This
enables us to study how fine-tuning on simpler datasets
change model robustness inherited from pre-training.
CIFAR100. CIFAR100 [25] extends CIFAR10 to 100
classes, each containing 600 images (500 for training, 100
for testing). While it shares the same low-resolution format,
CIFAR100 introduces a more fine-grained classification
task. The increased class diversity and hierarchical structure
(coarse and fine labels) make it a more complex dataset but
still much smaller in scale compared to ImageNet-21k.
Caltech256. Caltech256 [13] comprises 256 classes
with 30, 607 images, offering significantly more class diver-
sity than CIFAR datasets. It has a minimum of 80 images
per class. Caltech256 contains higher-resolution images
with more natural object variations, making it more similar
to ImageNet-21k in terms of complexity and scale. With
this, we can better understand how fine-tuning on a moder-
ately large dataset with varied classes affects robustness.
CUB-200-2011. CUB200 [47] is a fine-grained classi-
fication dataset containing 11, 788 images across 200 bird
species. Unlike broader classification datasets, CUB200
focuses on a single semantic category (birds), making
it an important benchmark for studying adversarial ro-
bustness in tasks where pre-trained models are fine-tuned
on more specialized, domain-specific knowledge. Since
ImageNet-21k includes bird species in its taxonomy,
this dataset allows us to explore how fine-tuning on a sub-
domain of the pre-training distribution impacts robustness.
Stanford Dogs. Stanforddogs [23] is another
fine-grained classification dataset with 22, 000 images of
120 dog breeds. Similar to CUB, it provides a challenging
adversarial benchmark due to the subtle intra-class varia-
tions among breeds. Since ImageNet-21k also contains
dog breeds, this dataset enables us to investigate whether
fine-tuning on a narrower but related distribution affects the
robustness inherited from pre-training.
DomainNet. DomainNet [41] is a large-scale domain
adaptation dataset of 586, 575 images, containing six differ-
ent domains: clip art, info graph, painting, quick draw, real,
and sketch. ImageNet-21k primarily contains real-world
images, making DomainNet an effective benchmark to
test how well fine-tuned models generalize when faced with
significant distributional changes, particularly when trained
on one domain and tested on others.

A.2. Trade-off Space of Fine-Tuning

We present the trade-off space between adversarial robust-
ness and accuracy in Figure 8. This corresponds to the train-
ing curves shown in Figure 3.
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(a) BitFit (Caltech256)
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(b) Adapter (Caltech256)
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(c) LoRA (Caltech256)
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(d) Full fine-tuning (Caltech256)

Figure 8. Trade-off visualization for Caltech256. The dots are cor-
responding to different time stamps during training (from bottom
left to upper right to upper left as time goes on).

A.3. Ablation Study

We perform an ablation study on the number and location of
trainable parameters and learning rate. We conduct experi-
ment sweeps with final model checkpoints on 1) LoRA rank
(r 2 [1,20]), 2) Adapter reduction factor (d 2 [4,32]), and 3)
update location (attention vs. FNN). The results show that
robustness does not consistently correlate with the number
of trainable parameters or layers updated. This suggests that
these factors alone do not explain robustness differences.
However, the results all show low adversarial accuracy with
small variances. It led us to our design choise: tracking
changes over training steps offer deeper insights.

In addition, we also study how different learning rates
affect OOD robustness during training. We track OOD
robustness while fine-tuning models with varying learning
rates—{1e � 4, 5e � 4, 1e � 3, 5e � 3}. As shown in Fig-
ure 9, learning rate does impact accuracy and robustness,
especially during the early steps, but show consistent trend
as claimed across steps and converge in the end.
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Figure 9. The OOD robustness of models fine-tuned by LoRA
with different learning rates on the “real” domain and evaluated
on 5 other domains.
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Figure 10. Continuous evaluation of training accuracy (blue), test
accuracy (green), and adversarial robustness (red) across back-
propagation steps (truncated at 10,000 steps) on Places365 [52].

A.4. Hyperparameters
Grid search is used to find optimal training hyperparame-
ters: base learning rate in {1e� 4, 1e� 5, 3e� 5, 5e� 5},
base weight decay in {1 � e2, 1 � e3}, and the adjustment
ratio for each fine-tuning strategy in {1, 10, 5, 10, 2, 2, 3}
(corresponding to the order of the strategies shown in
Table 3). These choices are based on previous litera-
ture [16, 17, 49] for different fine-tuning methods and
downstream datasets. They all have comparable scale of
trainable parameters (in percentage), except for full fine-
tuning:{100, 0.01, 1.19, 0.13, 2.03, 0.07, 0.07}. Due to the
large size of DomainNet [41], we consistently set the base
weight decay to be 1e � 2. The specific optimal training
hyperparameters can be found in Table 3 and Table 4.

A.5. Dataset Scale
PEFT is especially relevant in low-data regimes. Our
main experiments focus on datasets with 10k to 60k sam-

ples, covering diverse degrees of task complexity in terms
of number of classes, class separation, and similarity to
upstream data. To complement this analysis and assess
the effect of data scale, we also include experiments on
Places365 [52], a medium-scale dataset with approximately
1.8 million samples. As shown in Figure 10, models achieve
relatively low clean accuracy (preaking around 50%) and
limited adversarial robustness (less than 5%). Due to this
overall weak performance, the trend of adversarial robust-
ness and the differences of robustness across fine-tuning
strategies are difficult to distinguish.

A.6. Decomposition of Fine-Tuning
As described in Section 3.2.1, we focus on decomposing
PEFT methods along two directions: information location
and mechanisms, each having four components. The de-
composition for five PEFT methods can be found in Table 5.



Fine-Tuning
Methods

Learning Rate / Weight Decay for Adv Exps.
CIFAR10 CIFAR100 CUB200 Caltech256 Stanford Dogs

Full Fine-tune 3e-5/1e-3 5e-5/1e-3 5e-5/1e-3 1e-4/1e-3 1e-4/1e-3
Linear Probe 1e-5/1e-3 1e-5/1e-2 5e-6/1e-3 1e-5/1e-3 1e-5/1e-3
LoRA 5e-4/1e-2 5e-4/1e-2 2.5e-4/1e-2 5e-4/1e-3 5e-5/1e-2
BitFit 1e-5/1e-4 1e-5/1e-3 5e-6/1e-4 1e-5/1e-3 1e-5/1e-3
Adapter 1e-4/1e-3 2e-4/1e-2 2e-5/1e-2 2e-4/1e-2 2e-4/1e-3
Compacter 2e-4/1e-3 2e-4/1e-3 1e-4/1e-3 2e-4/1e-3 2e-4/1e-3
(IA)3 1.5e-4/1e-3 3e-4/1e-2 3e-4/1e-3 3e-4/1e-3 1.5e-4/1e-3

Table 3. Strategy configurations with datasets (Adv)

Fine-Tuning
Methods

Learning Rate for OOD Exps.
Clipart Infograph Painting Quickdraw Real Sketch

Full Fine-tune 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
Linear Probe 1e-3 1e-3 1e-3 1e-3 5e-4 1e-3
LoRA 5e-4 2.5e-4 5e-4 2.5e-4 5e-4 5e-4
BitFit 1e-3 1e-3 5e-4 1e-3 5e-4 1e-3
Adapter 2e-4 2e-4 2e-4 1e-4 2e-4 2e-4
Compacter 2e-4 2e-4 2e-4 2e-4 2e-4 2e-4
(IA)3 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4

Table 4. Strategy configurations with datasets (OOD)

Information Location Mechanism
PEFT

Strategies Attn FFN Rep. Bias Proj.
Layers

Matrix
Reparam

Element-wise
Mult.

Direct
Update

LoRA • � � � � • � �
IA3 � � • � � � • �
Adapter � � • � • � � �
Compacter � � • � • • � �
BitFit • • � • � � � •

Table 5. The space of PEFT strategies in terms of information location and underlying mechanisms
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