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A. Teacher Models and Student Models

A.1. CNN Architecture

For the CNN architecture, we utilize the pre-trained
ResNet50 from LUPerson [2], which consists of four stages
with inplanes values of 64, 128, 256, and 512, respec-
tively. The output channels of each stage are four times
its inplanes value. To construct student models of varying
sizes, we introduce four adjustable coefficients: inplanes
and multipliers[3]. The architecture of these models is il-
lustrated in Table A1. Here, inplanes corresponds to the
inplanes of the first stage, while multipliers[3] represents
the scaling factors of the inplanes for the subsequent three
stages relative to the first stage. Based on these coefficients,
we design six student models with progressively increasing
sizes, where each consecutive model doubles the parame-
ters of its predecessor. The student models are designated
as Res-50-S1 through Res-50-S6. The specific attributes of
these models are detailed in Table A2. While our approach
supports variable widths for all layers, we use these coeffi-
cients for simplicity.

A.2. ViT Architecture

For the ViT architecture, we employ pre-trained ViT-B and
ViT-S models from PASS [10]. For both ViT-B and ViT-
S, we construct two student models each, adhering to the
same parameter doubling scheme. These student models
are denoted as ViT-B-S1, ViT-B-S2, ViT-S-S1, and ViT-
S-S2. The student models differ from the teacher models
only in dimensionality while sharing the patch embedding
layer. To enable dimensionality reduction while preserv-
ing the shared patch embedding layer, we introduce a fully
connected layer between the patch embedding layer and the
backbone. The attributes of the teacher and student models
are detailed in Table A3.
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B. Weight Chains, Rows, and Columns

For CNNs, considering that the sizes of the student models
of ResNet50 in Table A2 span a relatively wide range, in
order to better inherit the knowledge of the teacher model,
we refined three weight chains denoted as WTC-1, WTC-
2, and WTC-3. Their inplanes are 8, 16, and 32, respec-
tively, which correspond to 1/8, 1/4, and 1/2 of the width
of the teacher model. In the experiments, WTC-1 is used
to expand and obtain Res-50-S1 and Res-50-S2, WTC-2 is
used to expand and obtain Res-50-S3 and Res-50-S4, and
WTC-3 is used to expand and obtain Res-50-S5 and Res-
50-S6. For ViT, we refined one weight chain for each of
them, with dimensions of 192 and 96 respectively, which
are one-fourth of the corresponding teacher models.

We use “rows” to denote both the weight matrix rows in
FC layers and filters in Conv layers, while “columns” refer
to the weight matrix columns in FC layers and channels in
Conv layers, with each row outputting a feature dimension
and each column processing a input feature dimension.

C. Experimental Details

C.1. Clustering Method

During the initialization of the weight chain, we em-
ploy AgglomerativeClustering [5] for clustering, setting
n clusters to the target dimension count while using de-
fault values for other parameters. In the ablation study pre-
sented in Table 6(b) (rand cluster), we first ensure that no
cluster is empty by randomly selecting a weight row from
the teacher model for each cluster. Subsequently, the re-
maining weight rows are assigned random cluster labels.
In Table 6(c) (inverse cluster), we begin by modeling the
relationships between weight rows and computing a dis-
tance matrix. This matrix is then inverted, and Agglom-
erativeClustering is applied to achieve clusters with larger
internal distances.
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Table A1. Model architectures of ResNet50 and its width-reduced student models. p: inplanes. [m1,m2,m3]: multipliers.

Layer Name Teacher: ResNet50 Students: Res-50-Sx

conv1 7× 7, 64, stride 2 7× 7, p, stride 2

conv2 x

3× 3 max pool, stride 2 1× 1, 64
3× 3, 64
1× 1, 256

× 3

 1× 1,p
3× 3,p

1× 1,p × 4

× 3

conv3 x

 1× 1, 128
3× 3, 128
1× 1, 512

× 4

 1× 1,p × m1

3× 3,p × m1

1× 1,p × m1 × 4

× 4

conv4 x

 1× 1, 256
3× 3, 256
1× 1, 1024

× 6

 1× 1,p × m2

3× 3,p × m2

1× 1,p × m2 × 4

× 6

conv5 x

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

 1× 1,p × m3

3× 3,p × m3

1× 1,p × m3 × 4

× 3

classifier average pool, fc, softmax

Table A2. Model attributes of ResNet50 and its student models.
The teacher model is highlighted in gray .

Model Inplanes Multipliers Params FLPOs

Res-50-S1 8 [2,4,8] 0.37M 0.05G
Res-50-S2 16 [2,3,4] 0.61M 0.14G
Res-50-S3 16 [2,4,8] 1.48M 0.19G
Res-50-S4 32 [2,3,4] 2.42M 0.51G
Res-50-S5 32 [2,4,8] 5.89M 0.70G
Res-50-S6 64 [2,3,4] 9.64M 1.92G
ResNet50 64 [2,4,8] 23.5M 2.70G

Table A3. Model attributes of ViT-B and ViT-S, along with their
student models. The teacher model is highlighted in gray .

Model Type Dimension Params MACs

ViT-S-S1 Student 120 2.20M 0.29G
ViT-S-S2 Student 168 4.42M 0.56G
ViT-S Teacher 384 21.74M 2.87G

ViT-B-S1 Student 264 10.35M 1.36G
ViT-B-S2 Student 336 16.68M 2.20G
ViT-B Teacher 768 86.24M 11.37G

C.2. Comparison Methods

DepGraph for model pruning. For model pruning, we
assess DepGraph [1], an advanced method that models
inter-layer dependencies to form groups, implements group

sparsity learning prior to pruning, and subsequently fine-
tunes the model. In the experiments of this paper, the set-
tings recommended by the authors are uniformly adopted.
For CNN, the combination of GroupNormImportance and
GroupNormPruner is utilized. For ViT, the combination of
GroupTaylorImportance and MetaPruner is employed.

KD++ for knowledge distillation. For knowledge distilla-
tion, we utilize KD++ [6], a state-of-the-art technique that
aligns student features with teacher class means and en-
hances feature norms to achieve superior results. In the ex-
periments of this paper, the parameters recommended by the
authors are all used. The coefficients of the loss functions
are set as follows: the kd loss factor is 1.0, the nd loss factor
is 1.0, and the temperature coefficient is set as t = 1.0.

C.3. Combined with Modern Light-weight ReID
Architectures

We employ the original-sized OSNet [9] and MSINet [3] as
teacher models and perform weight chain refinement over
50 epochs to obtain smaller-scale models with width multi-
pliers of 0.25 and 0.5. Following the same pre-training pro-
tocol, we utilize the MSMT17 [7] dataset for pre-training
and subsequently fine-tune the resulting lightweight mod-
els on Market1501 [8] and CUHK03 [4] to evaluate their
performance. Table C1 presents the results of direct pre-
training on MSMT17, as well as the outcomes of models
trained on MSMT17 using our proposed method.



Table C1. Results of modern ReID models initialized with various
methods on MSMT17. β: width multiplier.

β Params Method mAP (%) Rank-1 (%)

O
SN

et
[9

]

0.25 0.15M Scratch 33.1 56.9
OSKT 40.6 65.7

0.5 0.56M Scratch 45.3 69.7
OSKT 49.3 73.2

M
SI

N
et

[3
]

0.25 0.17M Scratch 23.0 50.0
OSKT 28.2 57.9

0.5 0.63M Scratch 46.1 70.1
OSKT 50.3 73.7

Table C2. The width of each weight chain in section 4.4.2. Each
weight chain is configured with multipliers = [2, 4, 8].

Method Inplanes

# weight chain = 3 [8,16,32]
# weight chain = 4 [8,13,23,38]
# weight chain = 5 [8,12,18,28,42]
# weight chain = 6 [8,11,16,23,,32,45]

C.4. Scalability Analysis of Weight Chains
As described in Section 4.4.2, the width of each weight
chain is determined using a geometric progression. Table
C2 provides the specific widths of each weight chain.

To further enhance performance, we employ a progres-
sive framework where a S-Student constructed with a larger
weight chain serves as the teacher to guide the training of
the next, smaller weight chain. Since the models built with
smaller weight chains are significantly more compact than
the original teacher model, this approach simultaneously
improves both performance and efficiency.

D. Limitations and Future Directions
OSKT is limited to generating models with varying widths
that share the same depth as the teacher model. When ex-
panding to larger models using the weight chain, the per-
formance is constrained by the limited knowledge that can
be accommodated within the smaller parameter space of the
weight chain. In the future, we aim to preserve more knowl-
edge from the teacher model by increasing the capacity of
the weight chain and designing more sophisticated mecha-
nisms for knowledge inheritance.
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