
Appendix for “Open-Unfairness Adversarial Mitigation for Generalized
Deepfake Detection”

1. Complexity analysis

Table 1. Comparison of computation costs.

Method Eff-b3 UCF LSDA FG-DD AdvOU
[2] [3] [4] [1] Ours

Num. Param.(M) 10.70 26.09+15.39 96.71+86.01 38.77+28.07 13.03+2.33

Train time(s/epoch) 942.7± 5.1 3568.1± 124.7 3510.9± 4023.8 7072.6± 18.4 1677.6 ± 101.4

We compare the parameter count and per-epoch train-
ing time of our AdvOU framework with state-of-the-art
methods. As shown in Table 1, AdvOU introduces only
2.33M additional parameters to the EfficientNet-b3 (Eff-b3)
backbone, attributable to its lightweight unfairness discov-
erer module. With a training cost of 1678 seconds/epoch
caculated over 5 times of training epoch, AdvOU remains
competitive against UCF [3], LSDA [4], and FG-DD [1] .
This efficiency stems from structural advantages: UCF [3]
and FG-DD [1] require computationally reconstruction op-
erations, while LSDA [4] relies on multi-teacher distilla-
tion that scales parameter overhead. In contrast, AdvOU
achieves fairness integration solely through alternating op-
timization between the unfairness discoverer and deepfake
detector.

2. Trade-offs between fairness and accuracy
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Figure 1. Trade-offs between fairness and accuracy metrics.

We analyze the trade-off between fairness and accuracy
on FF++ by varying the weight of the fairness mitigation
loss in Equation 9. As shown in Figure 1, increasing the
mitigation strength (x-axis) steadily improves FOAE and
FFPR, while other fairness metrics and AUC follow a rise-
then-drop trend. These results underscore the importance
of balancing fairness and accuracy when addressing open
unfairness in deepfake detection.

3. Hyperparameter analysis
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Figure 2. Sensitivity analysis for hyperparameters.

We conduct sensitivity analysis on three key hyperpa-
rameters (λu in Equation 4 as well as λr and λc in Equa-
tion 9) using FF++ for training and evaluating generaliza-
tion on unseen datasets(CDF, DFDC and DFD). Figure 2
illustrates the trade-off between hyperparameter values and
cross-dataset average AUC. Our analysis reveals that per-
formance is most sensitive to λc: AUC rises from 75.65
(λc = 0.0) to 80.04 (λc = 0.1) before declining to 77.90
at λc = 0.15. This non-monotonic relationship suggests
λc critically balances robustness against unfairness-induced
feature perturbations, with optimal regularization occurring
at λc = 0.1.
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