Physical Degradation Model-Guided Interferometric Hyperspectral
Reconstruction with Unfolding Transformer

Supplementary Material

In this supplemental document, we provide additional
analysis and details in support of the findings in the main
manuscript. The contents are organized as follows:

e Section | provides a brief introduction to the interfero-
metric hyperspectral imaging technology and the LASIS
system utilized in this paper.

* Section 2 offers details and and error analysis experi-
ments of the degradation model.

* Section 3 presents some details analysis on degradation
model and unfolding stages, along with supplemental vi-
sualization results.

1. Overview of Interferometric Hyperspectral
Imaging

In this section, we provide a concise introduction to the in-
terferometric imaging spectroscopy technique and the LA-
SIS system employed in this study, as well as the specific
information regarding the radiometric calibration data.

1.1. Interferometric Hyperspectral Imaging

Interferometric Hyperspectral Imaging (IHI), also known
as Fourier Transform Spectroscopy (FTS) [I, 3, 6], is a
widely used hyperspectral imaging technology in large-
scale aerospace remote sensing. Its foundational principle
originates from the Fourier transform relationship between
dual-beam interference intensity and the light source spec-
trum, discovered by Rayleigh in 1889. However, due to
the lack of efficient computational tools at the time, this
technology was not extensively applied. After 1965, with
the advent of computers and the Fast Fourier Transform
(FFT) algorithm, IHI gradually transitioned from laboratory
research to practical applications. In the 1980s, imaging
spectroscopy emerged as a critical technology in the field
of optical remote sensing. In recent years, advancements in
detector technology, high-speed data transmission, and pro-
cessing capabilities have further expanded the applications
of IHI in aerospace remote sensing, environmental monitor-
ing, and resource exploration. The fundamental process of
interferometric hyperspectral imaging is illustrated in Fig.
1.

Fundamental Principles of IHI. The core principle of in-
terferometric hyperspectral imaging lies in Fourier trans-
form spectroscopy. The basic concept involves splitting in-
cident light into two coherent beams using an interferometer
and generating interference patterns by varying the optical
path difference (OPD). These interference patterns encode
spectral information. Specifically, the interferogram across
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Figure 1. The fundamental process of interferometric hyperspec-
tral imaging.

the full spectral range is the sum of individual monochro-
matic interference patterns (constant terms omitted):

I(l) = /000 B(v) cos(2nvl) dv, (1)

where v is the wavenumber (v = 1/, A being the wave-
length), [ represents the OPD, and B(v) denotes the spec-
tral intensity as a real function in the wavenumber domain.
Since B(v) is real and (1) is an even function, the interfer-
ogram can be extended symmetrically:

+oo
I(l) = / B(w)e ™™ dy = F{B(v)}.  (2)
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Here, F denotes the Fourier transform. This allows
the conversion of spatial or temporal interferograms into
frequency-domain spectra. Compared to traditional disper-
sive spectrometers, Fourier transform spectroscopy offers
superior spectral resolution, sensitivity, and wavenumber
accuracy.

Classification. Interferometric Hyperspectral Imaging can
be categorized into three types based on modulation mech-
anisms.

Time-Modulated Interferometric Imaging employs a
moving mirror to continuously alter the OPD, capturing in-
terferograms at different time points. Its core component
is the Michelson interferometer,achieving time-modulated
systems achieve high spectral resolution and sensitivity.
Space-Modulated interferometric imaging systems utilize
spatial partitioning to achieve OPD variations, exemplified
by lateral shearing interferometers. Unlike time-modulated
systems, they eliminate the need for moving mirrors, en-
hancing stability and enabling real-time imaging.

Spatiotemporal-Modulated interferometric imaging is a
hybrid approach combines temporal and spatial modulation,
often employing a push-broom scanning mechanism to ac-
quire interferometric data. Spatiotemporal systems avoid
slits and moving components, enabling high-throughput
and high-resolution imaging in both spatial and spectral di-
mensions. They are particularly suited for large-area remote
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Figure 2. A schematic illustration of the principle of the LASIS
system. Light passes through the Sagnac interferometer to scan the
scene in the H direction. At a given moment, images are formed
with different H positions and optical path differences, each rep-
resenting a W x L frame. These frames are superimposed to fill
the interferometric data cube.

sensing and high-resolution applications. LASIS is a repre-
sentative example of a spatiotemporal-modulated system.

1.2. LASIS system

The Large Aperture Static Imaging Spectrometer (LASIS)
[8] is an advanced spatiotemporal-modulated interferomet-
ric system. Its core component is a lateral shearing inter-
ferometer. Unlike conventional space-modulated systems,
LASIS eliminates the entrance slit, significantly increasing
optical throughput. Furthermore, its static design removes
moving parts, enhancing reliability and stability.

As shown in pic 2, incident light passes through a front-
end optical system and enters the lateral shearing interfer-
ometer. The beam splitter divides the light into two coher-
ent beams, which are then recombined at the focal plane
to form interference patterns. The absence of a slit allows
LASIS to achieve wide-field and high-throughput imaging
while maintaining high resolution. Similar to most scan-
ning spectral imaging instruments, LASIS exhibits distinct
stripe patterns along the push-broom direction (referred to
as the H-direction in this study).

LASIS excels in aerospace remote sensing and environ-
mental monitoring due to its high throughput, wide field of
view, and static architecture. These features enable rapid ac-
quisition of large-area spectral data with robust operational
stability.

1.3. Radiometric Calibration

Radiometric calibration is a crucial technique in existing in-
terferometric imaging reconstruction methods. It extracts
important prior information about imaging degradation by
analyzing data collected from a special device named inte-
grating sphere, which provides uniform light environment
with specific spectral profiles.

Radiometric calibration primarily relies on two types of
data: absolute calibration data and relative calibration data.
Absolute calibration data are obtained directly by the inter-
ferometer in the calibration field, containing interferograms

of uniform light that have undergone the full degradation
process. In contrast, relative calibration data are acquired
by first removing the interferometric optical path from the
imaging system and then capturing data under the same en-
vironment.

In relative calibration data, the interferometer functions
as a scanning camera, allowing the direct separation of
degradation components related to the sensor. For instance,
in dark conditions, signal-independent current terms can be
extracted, while under uniform illumination, shot noise and
other components can be identified. By comparing rela-
tive calibration data with absolute calibration data, various
degradations induced by the interferometric optical path,
such as phase shifts and color offsets, can be isolated.

Although the specific methods of radiometric calibration
vary, their fundamental principles and data formats are sim-
ilar. The model parameter estimation approach proposed in
this study is also based on standard radiometric calibration
data, requiring no additional data acquisition. This makes
the method practical.

2. Details in Degradation Modeling
2.1. Details of Degradation Model

In summary, the overall expression for the degradation
model is as Eq. 3 and Eq. 4, and the degradation param-
eters are shown in Tab. 1.

Io =Moo (F{A ®Bg} + 86 By),
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Id = K/ ® (IO + Nshot) + D/ + Nreada ( )
Nshot ~ P(IO),

Nread ~ N(07 U;ead)’ (4)

log(e') ~ N(0,e), K' = ¢ - K,
D' =¢ D, 0y =€ - Oread-

where © is element-wise multiplication, u(-) denotes the
mean and o(+) denotes the standard deviation.

component parameter size type
A W x N
Io 1,3[ Wox L trend term
K’ K random noise
D’ D WXL | tendterm
Niead Oread W
K', D', Nyew e 1 random noise

Table 1. Parameters for the degradation model, including the scale
and type of each parameter.

Additionally, within the degradation model, there is a de-
tail that requires clarification. The dark current D is actu-
ally composed of two components, namely the dark current



mean Dy € R and the dark current pattern D, € RW>L,
that is,
D = Dy +D.. 5

Here, the dark current mean Dy represents the base noise
across the entire sensor system, which is almost an invari-
ant and unrelated to spatial conditions, being primarily as-
sociated with the overall state of the instrument. The dark
current pattern D, on the other hand, represents the portion
of the dark current that varies among different sensors, in-
fluenced by lighting conditions and ISO settings, and pos-
sesses certain characteristics of random noise. Therefore,
the parameter selection formula for electronic degradation
D’ = €' - D is essentially a simplified form, and the de-
tailed expression is as:

D' =Dy +¢ - D.. (6)
parameter i o o/u(%)
A 1.541 0.071 4.6
B 2.974 0.032 1.1
M 1.165 2.997e-3 0.3
K 0.019 9.820e-4 5.1
Do 127.538 0.224 0.2
D. -2.177 0.111 49
Oread 2.259 0.125 5.5
e 0.1 - -

Table 2. The error analysis of the model parameters is presented,
with the table listing the mean and variance of the model parame-
ters calibrated across multiple images in calibration dataset.

2.2. Error Analysis Experiments

Accuracy is significant for the degradation model, as it de-
termines whether the model can accurately represent the
real degradation process, generate realistic degraded data,
and consequently influence the reconstruction performance
of learning-based methods. To ensure accuracy during the
development of the degradation model, we continuously
validate it through error estimation and fitting evaluation on
calibration data. Specifically, we conduct parameter error
estimation during the calibration process, and the results are
presented in Tab. 2. The error estimation method involve
calculating errors and standard deviations across multiple
calibration datasets with varying brightness levels and com-
paring them. As shown, all parameter errors are within 6%,
with only A and oy reaching 5%. Since A contains com-
plex components and the noise amplitude of N.,q is rela-
tively small, these errors are within acceptable limits.
Furthermore, since M is the primary factor causing in-
stability in the interference curves, we validate its accuracy
by removing M from the calibration data and performing an
Augmented Dickey-Fuller (ADF) stationarity test. The ex-
perimental results yielded an average ADF value of -14.25
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Figure 3. Validation of modeling of Nyed. The normalization of
calibration data taken in a dark environment, followed by fitting to
a normal distribution after division by oread. The high degree of
fitting confirms the accuracy of our noise modeling for Nyead.

and an ADF p-value of 0 across different brightness levels,
indicating strong stationarity. To validate the rationality of
O read in the dark noise model N .,q, we divide the extracted
zero-mean noise from the calibration data taken in the dark
environment directly by o e,q to normalize it, and fit it with
a normal distribution, as shown in Fig. 3. The normalized
noise closely follows a normal distribution with ¢ of 1, con-
firming the accuracy of this design.

Subsequently, we generate 4 scenes of simulated cal-
ibration data using the complete degradation model and
compare it with real calibration data by calculating the
Kullback-Leibler (KL) distance to investigate distributional
differences, as shown in Tab. 3. The results demonstrate
that the KL distance remains low across different bright-
ness levels, and its increase aligns with the growth pattern
of shot noise. This validates the accuracy of the simulation
process.

sO sl s2 s3
0.00328 | 0.00457 | 0.00791 0.02431

KL distance

Table 3. The simulation results of the degradation model were
compared with the KL distance of real data, encompassing four
scenes with average values of 0, 1000, 2000, and 3000, respec-
tively. The overall distribution error is minimal, further validating
the accuracy of the degradation model.

The above results confirm the effectiveness of the degra-
dation model, which serves as a foundation for further re-
search on IHI reconstruction tasks.

3. Additional Experimental Details

This section provides additional details on the experimental
setup that were not extensively covered in the main text,
along with supplementary analyses of the experiments.
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Figure 4. Supplementary Comparison of reconstructed HSI with error maps (10x amplified). We select Synthetic (a) Scene 1 (b) Scene
3 (c) Scene 4 (c) Scene 5 (d) Scene 6 from HSOD-BIT, cropped by 256x256, and Real (e) Scene 1 (f) Scene 2 from Calibration dataset
cropped by 64x64. The error map exhibits the spectral absolute error of IHI reconstruction results by 8 algorithms and IHRUT with 7
stages. The region within the box is chosen for analysis of the reconstructed spectra and zoom in for a more detailed examination.

PSNR/SSIM stages
GFLOPs/params 3 4 5 6 7

PADUT 29.05/0.949 29.46/0.975 29.78/0.984 29.41/0.968 29.33/0.968
134.02/9.23M | 167.86/11.61M | 201.59/13.86M | 235.66/16.12M | 269.65/18.29M

RDLUF 37.61/0.976 37.21/0.922 36.43/0.914 36.35/0.912 35.50/0.898
155.72/9.29M 196.85/9.29M 232.48 /9.29M 268.14/9.29M 302.31/9.29M

MAUN 37.82/0.986 37.98/0.988 38.14/0.989 38.15/0.991 38.15/0.992
68.76 / 2.03M 93.05/2.73M 117.34/3.41M 141.63 /4.10M 165.92/4.78M

HRUT 38.35/0.982 39.12/0.989 39.46/0.992 39.55/0.992 39.61/0.992
59.69 /1.99M 83.04/2.60M 106.36 / 3.20M 126.13/3.71M 145.80 / 4.42M

Table 4. Reconstruction performance and complexity analysis of unfolding-based methods with different numbers of stages. Evaluation is

conducted on Calibration dataset.

3.1. Details in Experimental Settings

Due to the unique requirements of IHI reconstruction, our
dataset and methodology underwent necessary preparatory
steps, which are described below.

Training Dataset. In this study, the training data for the IHI
reconstruction task are primarily generated through simula-

tion. Hyperspectral images (HSIs) serve as the ground truth
(GT), while the simulated interferograms are used as the
learning targets. The selection of the HSI dataset is guided
by the following criteria:

* The spectral range must cover the 0-900 nm range of the
LASIS system. (Datasets such as ICVL [] do not meet



this requirement.)

* The dataset must exhibit high quality to serve as reliable
GT.

* To meet generalization requirements (e.g., denoising),
the dataset should ideally include multiple independent
scenes.

The HSOD-BIT dataset [7], originally designed for hy-
perspectral object detection, is chosen as it satisfies all the
above conditions, as discussed in the main text. We select
46 images as training scenes. The original images contain
slight noise, which is preliminarily removed using wavelet
transformation. The images are then spatially downsam-
pled to half their original size, followed by spectral linear
interpolation to obtain HSIs of size 620 x 840 x 70. Al-
though the LASIS device used in this study has a constraint
of W = 2048 and A = 70 in HSI dimensions, this scale is
too large for direct training. Therefore, we uniformly crop
276 patches of size 256 x 256 x 70 from the HSIs to form
the final training set. During simulation, each patch is ran-
domly assigned a shift along the W-direction to simulate
real-world imaging scenarios.

The above preprocessing steps ensure both the quality
and generalization capability of the training data.

Testing Dataset. The preparation of the testing datasets,

HSOD-BIT and Houston, is relatively straightforward. For

the four images from HSOD-BIT, we apply the same

wavelet-based denoising method. Subsequently, all data are
spatially upsampled to W = 2048 and cropped into mul-
tiple scenes of H = 256. From these scenes, six from

HSOD-BIT and one from Houston are randomly selected as

the test set. Since both datasets inherently have high spatial

resolution, the low upsampling ratio does not compromise
the validity of the test samples. Real-world data can be used
for testing without any preprocessing.

3.2. Analysis of Unfolding Stages

In the reconstruction comparison experiments, all
unfolding-based methods are selected for the optimal
number of stages with the best performance. In reality,
we conduct analysis experiments on each algorithm for 3
to 7 stages on real calibration datasets and find that the
performance of these algorithms does not consistently
increase with the number of stages. Tab. 4 present the
complexity and reconstruction results of PADUT [5], RD-
LUF [2], MAUN [4], and our IHRUT across 3 to 7 stages.
The peak performance of PADUT and RDLUF occurs at 5
and 3 stages, respectively. For PADUT, the generalization
results and real reconstruction outcomes indicate that it
has not fully adapted to IHI tasks, and it is more inclined
to optimize SSIM than PSNR. RDLUF shares the same
parameters across all stages, and thus additional iterations
are detrimental to performance without a change in model
expressiveness. In contrast, the performance of MAUN

and IHRUT improves with an increasing number of
stages, showing better adaptation to IHI tasks, and IHRUT
achieves superior performance with fewer parameters and
lower complexity.

In th unfolding stages of IHRUT, the optical degradation
priors from degradation model are incorporated into oper-
ators F and F’ (in Sec. 3.3 and Fig. 3 of main paper),
playing a role as sensing matrix (conversion between in-
terferomgrams and HSIs), guiding the unfolding iterations.
Specifically, as visualized in rFig. 5, F’ at the network in-
put initially converts the degraded interferometric data into
the spectral domain. Meanwhile, F and F’ within the Data
Modules impose constraints for the spectral reconstruction
fidelity in unfolding iterations.

2 = X + SPEq(F'(y — Fxi)) + SPE, (m))
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Figure 5. Input and output of the degradation prior components
(operators F and F’) at different parts of the network on Houston
dataset.

3.3. Supplemental Visualization

In the comparative experiments, only three sets of visualiza-
tion results are presented in the main text. For the remain-
ing seven scenarios, we display them here, as shown in Fig.
4. Our visualization method is consistent with previous ap-
proaches, where the results are obtained by pixel-wise resid-
ual maps magnified by a factor of ten (values exceeding 0.1
are set to 0.1). Overall, IHRUT demonstrates superior per-
formance, showing a more significant effect in the removal
of degradation components compared to other algorithms.

References

[1] Robert Bell. Introductory Fourier Transform Spectroscopy.
Academic Press, New York and London, 1972. 1

[2] Yubo Dong, Dahua Gao, Tian Qiu, Yuyan Li, Minxi Yang,

and Guangming Shi. Residual degradation learning unfolding

framework with mixing priors across spectral and spatial for

compressive spectral imaging. In Proceedings of IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

22262-22271,2023. 5

P Fellgett. Theory of multiplex interferometric spectrometry.

J. Phys. Radium, 19:187-191, 1958. 1

[4] Qian Hu, Jiayi Ma, Yuan Gao, Junjun Jiang, and Yixuan Yuan.
Maun: Memory-augmented deep unfolding network for hy-
perspectral image reconstruction. IEEE/CAA Journal of Auto-
matica Sinica, 11(5):1139-1150, 2024. 5

[5] Miaoyu Li, Ying Fu, Ji Liu, and Yulun Zhang. Pixel adap-
tive deep unfolding transformer for hyperspectral image re-
construction. In Proceedings of IEEE International Confer-
ence on Computer Vision, pages 12959-12968, 2023. 5

[6] Ernest V Loewenstein. The history and current status of
fourier transform spectroscopy. Applied Optics, 5(5):845—
854, 1966. 1

3

—_—



(7]

(8]

Haolin Qin, Tingfa Xu, Peifu Liu, Jingxuan Xu, and Jianan Li.
Dmssn: Distilled mixed spectral-spatial network for hyper-
spectral salient object detection. IEEE Transactions on Geo-
science and Remote Sensing, 2024. 5

Bin Xiangli, Qisheng Cai, and Shusong Du. Large aperture
spatial heterodyne imaging spectrometer: Principle and exper-
imental results. Optics Communications, 357:148-155, 2015.
2



	Overview of Interferometric Hyperspectral Imaging
	Interferometric Hyperspectral Imaging
	LASIS system
	Radiometric Calibration

	Details in Degradation Modeling
	Details of Degradation Model
	Error Analysis Experiments

	Additional Experimental Details
	Details in Experimental Settings
	Analysis of Unfolding Stages
	Supplemental Visualization


