A. Additional Details of the Drag Encoding

Here, we give a formal definition of enc(:,s) intro-
duced in Sec. 3.2. Recall that enc(-,s) encodes each
drag d, = (ug,vi’") into an embedding of shape
N X s x s x 6. For each frame n, the first, mid-
dle, and last two channels (of the ¢ = 6 in total) en-
code the spatial location of wuy, vy, and v,iv , respec-
tively. Formally, enc(dg,s)[n,:,:,: 2] is a tensor of all
negative ones except for enc(dy, s)[n, | 52|, [5£],: 2] =
(52— [52]. 52 [ 52]) where g = (hw) € O =
{1,...,H} x {1,...,W}. The other 4 channels are de-
fined similarly, with wu, replaced by v}’ and v,]cv .

B. Additional Details of Data Curation

B.1. Implementation Details

We use the categorization provided by GObjaverse [48] and
exclude 3D models classified as ‘Poor—-Quality’ as a
pre-filtering step prior to our proposed filtering pipelines
(Sec. 4).

When using GPT-4V to filter Objaverse-Animation
into Objaverse-Animation-HQ, we designed the following
prompt to cover a wide range of cases to be excluded:

System: You are a 3D artist, and now you are be-
ing shown some animation videos depicting an an-
imated 3D asset. You are asked to filter out some
animations.

You should filter out the animations that:

(1) have trivial or no motion, i.e., the object is simply
scaling, rotating, or moving as a whole without part-
level dynamics;

or (2) depict a scene and only a small component in
the scene is moving;

or (3) have motion that is imaginary, i.e., the motion
is not the usual way of how the object moves and it’s
hard for humans to anticipate;

or (4) have very large global motion so that the ob-
ject exits the frame partially or fully in one of the
frames;

or (5) have changes in object color that are not due
to lighting changes;

or (6) have motion that causes different parts of the
same object to disconnect, overlap in an unnatural
way, or disappear;

or (7) have motion that is very chaotic, for example
objects exploding or bursting apart.

User: For the following animation (as frames of a
video), framel, frame2, frame3, frame4, tell
me, in a single word ‘Yes’ or ‘No’, whether the video
should be filtered out or not.

The cost of GPT-4V data filtering is about $500.
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Figure 7. Data curation helps stabilize training.

Setting PSNRT SSIM{ LPIPS| FVDJ

w/o Data Curation  6.04 0.411 0.703 1475.35
w/ Data Curation 19.87 0.884 0.181 624.47

Table 3. Training on more abundant but lower-quality data leads
to lower generation quality. Here, ‘w/o Data Curation’ model is
trained on Objaverse-Animation while ‘w/ Data Curation’ model
is trained on Objaverse-Animation-HQ. Both models are trained
for 7k iterations. Evaluation is performed on the test split of Drag-
a-Move.

B.2. Less is More: Data Curation Helps at Scale

To verify that our data curation strategy from Sec. 4 is
effective, we compare two models trained on Objaverse-
Animation and Objaverse-Animation-HQ, respectively, un-
der the same hyperparameter setting. The training dynam-
ics are visualized in Fig. 7. The optimization collapses to-
wards 7k iterations when the model is trained on a less cu-
rated dataset, resulting in much lower-quality video sam-
ples (Tab. 3). This suggests that when fine-tuning a pre-
trained video diffusion model to generate part-level motion,
the quality of the data is more critical than its quantity.

C. Additional Experiment Details
C.1. Training Details

Data. Our final model is fine-tuned on the combined
dataset of Drag-a-Move [31] and Objaverse-Animation-
HQ (Sec. 4). During training, we balance various types
of part-level dynamics to control the data distribution.
We achieve this by leveraging the categorization pro-
vided by GObjaverse [48] and sampling individual data
points with the following hand-crafted distribution: p(Drag-
a-Move) = 0.3, p(Objaverse-Animation-HQ, category
‘Human—-Shape’) = 0.25, p(Objaverse-Animation-HQ,



category ‘Animals’) = 0.25, p(Objaverse-Animation-
HQ, category ‘Daily-Used’) = 0.05, p(Objaverse-
Animation-HQ, other categories) = 0.15.

Architecture. We zero-initialize the final convolutional
layer of each adaptive normalization module before fine-
tuning. With our introduced modules, the parameter count
increases to 1.68B from the original 1.5B in SVD.

Training. We fine-tune the base SVD on videos of 256 x
256 resolution and N = 14 frames with a batch size of
64 for 12, 500 iterations. We adopt SVD’s continuous-time
noise scheduler, shifting the noise distribution towards more
noise with log o ~ N(0.7,1.6%), where o is the continuous
noise level following the presentation in [4]. Training takes
roughly 10 days on a single Nvidia A6000 GPU, where we
accumulate gradients for 64 steps. We enable classifier-free
guidance (CFG) [23] by randomly dropping the conditional
drags D with a probability of 0.1 during training. Addition-
ally, we track an exponential moving average of the weights
at a decay rate of 0.9999.

C.2. Inference and Evaluation Details

Inference. Unless stated otherwise, samples are generated
using S = 50 diffusion steps. We adopt linearly increasing
CFG [4] with a maximum guidance weight of 5.0. Gener-
ating a single video takes roughly 20 seconds on an Nvidia
A6000 GPU.

Baselines. For DragNUWA [70], DragAnything [67], and
Image Conductor [32], we use their publicly available
checkpoints. DragNUWA and DragAnything operate at a
resolution of 576 x 320, and Image Conductor at 384 x 256.
Following previous work [31], we first pad the square input
image y along the horizontal axis to the correct aspect ra-
tio and resize it to the corresponding resolution, then re-
move the padding from the generated frames and resize
them back to 256 x 256. For methods that require text
prompts (i.e., DragNUWA and Image Conductor), we use
generic prompts to describe the category of the evaluation
images (e.g., ‘A Furniture’ for Drag-a-Move and ‘A
person’ for Human3.6M). Note that Image Conductor is
trained on 16-frame videos instead of 14-frame ones. We
experimented with (1) simply generating 14 frames at in-
ference time; and (2) generating 16 frames and discarding
the last two frames. The latter gives slightly better results,
which we report. We find that tasking it to generate 14-
frame videos produces reasonable results which we report.
All metrics are computed on 14-frame videos of resolution
256 x 256.

We train DragAPart [31] for 100k iterations using its
official implementation on the same combined dataset of
Drag-a-Move and Objaverse-Animation-HQ used for train-
ing Puppet-Master. Since DragAPart is an image-to-image
model, we independently generate 14 frames conditioned

on gradually extending drags to obtain the video.

For Sora [7], we uploaded the conditioning image
in Fig. 4 as the start frame. Since the model does not support
motion control, we manually crafted the following prompt
to convey the motion condition:

A photorealistic video of a modern, light grey
wooden sideboard with a natural wood top. The
three drawers at the top remain completely static
and closed throughout the entire video, without any
movement or displacement. From this initial state,
only the bottom cabinet doors begin to slowly and
smoothly close, moving in a natural, physically plau-
sible manner. The motion follows proper hinge me-
chanics, ensuring perfect alignment, symmetry, and
realism, with no jerky or unnatural movement. The
camera remains fixed in the same frontal view, main-
taining the exact perspective of the reference image.
The lighting is soft and even, enhancing the wood
texture, clean lines, and elegant design without cast-
ing harsh shadows or introducing distractions. The
video maintains a high-quality, cinematic appear-
ance, with no additional objects or background el-
ements.

D. Video Diffusion Models on Out-of-Domain
Resolutions
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Figure 8. Stable Video Diffusion fails to generalize robustly to
out-of-domain resolutions at inference time.

The convolution and attention modules in video diffu-
sion models like SVD are not invariant to input resolution.
As demonstrated in Fig. 8, our base model SVD, which was
trained on videos with resolution 1024 x 576, cannot gen-
erate high-quality videos at out-of-domain resolutions such
as 256 x 256. We hypothesize that this resolution shift
makes fine-tuning susceptible to local optima, resulting in
visually cluttered generations (Fig. 6). All-to-first attention
(Sec. 3.3) significantly reduces this appearance degradation.
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Figure 9. More examples generated by Puppet-Master.

Figure 10. Results on images with diverse backgrounds.

E. Discussions

Motion diversity. In Fig. 9(a-d), we show that Puppet-
Master can generate diverse part-level animations, both
across different random seeds when conditioned on the
same input image and set of drags (i.e., a and b), and across
different sets of drags when conditioned on the same input
image (i.e., c and d).

Part-level vs. object-level motion. In this work, we focus
on synthesizing internal, part-level motion. To achieve this,
we curated Objaverse-Animation-HQ to specifically learn

motions involving object parts being manipulated. As a re-
sult, Puppet-Master is not designed for global object motion
and may produce artifacts when the input drag(s) do not cor-
respond to meaningful part-level movement (Fig. 9e).

Failure cases. Puppet-Master may fail to maintain the
shape of objects, occasionally leading to the disappearance
of certain parts. This issue is particularly evident when
physically plausible motion necessitates precise coordina-
tion among multiple object parts, such as the five fan blades
in Fig. Of.

Results with real-world backgrounds. Although all train-
ing frames are rendered with a white background, Puppet-
Master retains some ability from the SVD backbone to han-
dle complex backgrounds, as illustrated in Fig. 10. Bet-
ter results could be obtained by incorporating, e.g., random
backgrounds during training.

Limitations. Another limitation of our model is its slight
difficulty in preserving the exact color appearance of ob-
jects during inference on real-world images. This issue
arises due to two primary factors: (1) the synthetic 3D
models in Objaverse-Animation-HQ typically feature high-
contrast, stylized textures, leading to a train-test discrep-
ancy in color distributions; and (2) when testing at a lower
resolution (e.g., 256 x 256) compared to the native resolu-
tion of SVD, noise in the denoiser’s output can propagate
across a larger region of the image because of the fixed re-
ceptive field of convolutional layers, leading to many in-
stances having a slightly flickering appearance.

Future work. While most motion-conditioned video gen-
erators prioritize object-level motion over fine-grained part-
level motion, we have demonstrated it is feasible to learn a
part-level motion prior using a modestly sized, high-quality
synthetic dataset that generalizes effectively to real-world
data. Future research may develop a dynamic routing mech-
anism that integrates both part-level and object-level dy-
namics.



