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Figure 1. Generalization comparison on crazy difficult garments.

In Sec. 1, we demonstrate two additional benefits
brought by the RAG system: enhanced generalizability,
and human-interpretable control through landmark manip-
ulation. In Sec. 2, we discuss the limitations of our work
and outline directions for future research. Given that stan-
dard garment generation is a novel task, we elaborate on its
practical significance in Sec. 3. To enhance reproducibility,
we provide a detailed description of the network architec-
ture, hyperparameters, and procedural steps in Sec. 4, thor-
oughly covering the process of RAG system construction,
including dataset. In Sec. 5, we discuss preliminary knowl-
edge relevant to this work. Finally, in Sec. 6, we detail
the experimental evaluation process and provide additional
results from the ablation study, along with extensive cases
of RAGDiffusion within STGarment, Viton-HD and Dress-
Code.

1. Additional rationale for introducing RAG
In addition to enhancing structural determinacy and elim-
inating structural distortion through the assimilation of
structural landmarks and external knowledge, we have also
discovered two additional benefits brought by the RAG sys-
tem: enhanced generalizability, and human-interpretable
control through landmark manipulation.

1.1. Enhanced generalizability due to RAG
Generally speaking, Retrieval-Augmented Generation
(RAG) can significantly enhance generalization and
robustness in new scenarios simply by updating the
retrieval database, without the need for retraining. This

provides a cost-effective and convenient maintenance
solution for large generative models, avoiding the expen-
sive process of retraining. We have also observed similar
phenomena in RAGDiffusion.

RAGDiffusion is trained on upper-body clothing data
and has not encountered lower-body garments during train-
ing. In this testing phase, we collect embeddings and cor-
responding landmarks for 856 lower-body/dress items and
incorporate them into the external memory database. Sub-
sequently, we gather 50 lower-body/dress in-the-wild cloth-
ing samples as a test set, using a ReferenceNet version as a
baseline for comparison. The results in Fig. 2 demonstrate
that retrieval significantly improves generalization capabil-
ities.

By injecting the embeddings of lower-body garments
along with their corresponding contour landmarks as con-
ditional constraints, RAGDiffusion produces accurate re-
sults in the lower-body domain, showcasing its strong
out-of-distribution (OOD) compatibility. In contrast, the
ReferenceNet version is noticeably confused by the con-
cept of lower-body garments and fails to yield meaning-
ful garment structures. This is because current generative
models necessitate corresponding training data to perform
well. Other baselines face similar issues. ReferenceNet re-
quires retraining with lower-body try-on training data to
work effectively on lower garments. In contrast, RAGDif-
fusion does not need retraining or expensive try-on train-
ing data, as it can achieve results with just standard cloth-
ing database update, illustrating its greater flexibility. Of
course, RAGDiffusion could perform better on lower gar-
ments if it underwent training similar to that on upper gar-
ments. This boost in generalization increases the opera-
tional maturity of RAGDiffusion, enabling it to effectively
handle various OOD images submitted by users.

Generalization on Extreme Clothing Types. As RAGDif-
fusion works with real-world data, we provide more results
to showcase how it handles super varied garments—like
crazy patterns or funky designs in Fig. 1. I. Crazy patterns.
Due to the pattern-level and detail-level faithful generation
pipeline (Section 3), RAGDiffusion delivers accurate tex-
ture and logos even if the garment has crazy patterns, as
shown in Main. Fig. 5, 6, and Fig. 1. II. Funky shapes.
Highly varied shapes pose a significant challenge for all
methods. Existing methods are nearly impossible to suc-
ceed in these scenarios. While our model still has a proba-
bility of generating distorted shapes, it also produces correct
results sometimes, and overall, RAGDiffusion significantly
outperforms the baselines.
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Figure 2. RAGDiffusion is able to produce accurate results in the lower-body domain, showcasing its strong out-of-distribution compati-
bility and generalization ability.
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Figure 3. Users can modify the final visual presentation by replacing recommended silhouette masks/landmarks with one of K candidates
before UNet denoising, highlighting RAGDiffusion’s advantages in human-interpretable control and retrieval-based recommendation ma-
nipulation.

1.2. Human-interpretable control through land-
mark manipulation due to RAG

In practice, the retrieval-acquired silhouette mask provides
users with a visual shape preview opportunity before UNet
denoising. Users can modify the final visual presentation by
replacing recommended silhouette masks/landmarks (i.e.,
selecting from the recommended K nearest neighbor land-
mark candidates during retrieval) before UNet denoising.

For instance, in formal shirt scenarios, complete flatten-
ing may be required to convey a serious aesthetic, whereas
in hoodie cases, users might prefer slightly bent sleeves
with mild surface wrinkles to achieve a casual and relaxed
appearance. As shown in Fig. 3, we demonstrate sev-
eral style modification cases of flat-lay garments through
human-interpretable manipulation. This functionality is ab-
sent in end-to-end generative models like ReferenceNet [4],
TryOffDiff [10], and TryOffAnyone [11], highlighting
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Figure 4. Failure cases about color bias. RAGDiffusion is possible
to encounter color bias due to MSE loss constraints and illumina-
tion variance. Extended training durations, along with the incor-
poration of contrast-enhancing data augmentation techniques, can
partially alleviate this issue.

RAGDiffusion’s advantages in human-interpretable control
and retrieval-based recommendation manipulation.

2. Limitations and future work

We present RAGDiffusion, an efficient RAG framework
that supports the generation of standardized clothing assets
by effectively addressing the prevalent challenges of struc-
tural hallucinations and fidelity in generated images. How-
ever, there is also limitations to discuss, which will help us
improve the proposed framework further.

Actually, we have observed a possibility of color bias
in nearly pure-colored garments, particularly under very
bright or very dark situations, as shown in Fig. 4. This phe-
nomenon is commonly encountered in image-based image
editing, as the reconstruction loss constraints of Stable Dif-
fusion are not particularly sensitive to color discrepancies.
Additionally, the illumination variance can further impact
the perceived colors of clothing. We note that extended
training durations, along with the incorporation of contrast-
enhancing data augmentation techniques, can partially alle-
viate this issue.

In our future work, we aim to enhance RAGDiffusion in
both its application depth and breadth. Firstly, by strength-
ening the injection of color information and incorporating
lighting simulation, we hope to address the potential color
bias observed in garments. Secondly, we intend to expand
RAGDiffusion to encompass additional categories such as
bottoms, dresses, and shoes, thereby achieving more com-
prehensive coverage.

Retrieval Time Denoising Time LLM Caption Time

0.3 seconds 8.0 seconds 3.5 seconds

Table 1. Sampling time cost on an RTX 3090 GPU at resolution
of 768× 768. Retrieval cost is a negligible part of generation.

3. Downstream applications of the standard
garments

The standard garment acts as a vital intermediary vari-
able connecting a range of downstream applications, in-
cluding garment design, product display, and virtual fit-
ting. It actually serves as an essential standard element
within e-commerce databases. In this context, we illustrate
several examples that showcase the relationships between
standard garments and their associated downstream appli-
cations in Fig. 5. The image editing results are sourced
from SDXL-inpainting [7], while the remaining outcomes
are derived from existing toolkits.

4. More implementation details
4.1. Computational costs report
The computational overhead is relatively negligible when
facing a larger retrieval memory database. In practical gen-
eration, we store feature vectors of a standard garment set
locally as the retrieval memory database. During sampling,
we retrieve the most similar garment vectors efficiently with
FAISS [2] from the memory database in parallel based on
the feature vector of the input image. On the other hand, the
speed bottleneck of the generation process lies in the itera-
tive denoising process, where retrieval time is a negligible
part, as shown in Tab. 1.

4.2. StructureNet
The extraction of pure visual features from in-the-wild
clothing images presents challenges due to several local fac-
tors, including but not limited to: 1) occlusions or creases
resulting from complex poses that obscure clothing content;
2) the shapes of garments being less pronounced when worn
on a person, making it difficult to assess fit accuracy; and
3) in-the-wild images often containing foreground obstruc-
tions or inner garments, which can cause visual generative
models to mistakenly incorporate these external objects into
the final generation results. To mitigate the limitations of
pure visual feature extraction, we introduce an LLM that
leverages extensive pre-training on vast amounts of data to
enhance our understanding of clothing.

Discrete attributes prediction by LLM. As shown in
Tab. 2, we employ the Qwen2-VL-7B [1] language model
to extract a total of 14 clothing attributes, of which 10 con-
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Figure 5. The standard garment serves as an essential standard element within e-commerce databases. In this context, we illustrate several
examples that showcase the associated downstream applications.

Category: Jacket; 
Fit: Regular; 
Collar: Baseball; 
Sleeve Length: Long; 
Fabric: Mixed; 
Length: Medium; 
With Inner Wear: Yes; 
Sleeves Rolled Up: No; 
Top Open: Yes; 
Top Tuck In: No.

Category: Shirt; 
Fit: Regular; 
Collar: Shirt; 
Sleeve Length: Long; 
Fabric: Denim; 
Length: Medium; 
With Inner Wear: No; 
Sleeves Rolled Up: No; 
Top Open: No; 
Top Tuck In: No.

Intrinsic
Attributes

In-the-wild
Status

Intrinsic
Attributes

In-the-wild
Status

Figure 6. Visualization of data items in our collected dataset
STGarment.

tribute to the construction of the garment structure embed-
dings, indicated by an asterisk ∗. The language model also
provides captions describing the clothing content, thereby

enhancing our external knowledge. We utilize 4 NVIDIA
H20 GPUs to deploy the Qwen2-VL-7B service, achieving
the attribute and caption generation time of under 2 seconds.

Embedding encoding. In the construction of Struc-
tureNet, we first extract features fimg from in-the-wild
clothing images or flat-lay images using the CLIP-ViT-
L/14 [8] image encoder backbone (specifically from the
second-to-last layer), resulting in a feature dimension of
768. Subsequently, we assign a 32-dimensional learnable
embedding to each attribute extracted from the language
model and concatenate the attribute features fattr with
the image features fimg to form a vector in R768+10×32.
Through the Resampler module [12], we conduct a non-
linear mapping, ultimately forming an embedding e. The
Resampler module consists of 4 layers of MLP and 4 lay-
ers of attention mechanisms, derived from the IP-Adapter
open-source code. For features originating from different
image domains (xitw, xstd), we designate the extracted em-
beddings as (eitw, estd). The dual-tower ViT image en-
coder combined with the Resampler module is referred to



as StructureNet. As described in the main body of pa-
per, StructureNet is trained on STGarment using contrastive
learning for 4 days on 4 NVIDIA H20 GPUs with a batch
size of 128.

4.3. EP-Adapter
Inspired by IP-Adapter-plus-XL [12], we employed a sim-
ilar structure for feature information injection. The key el-
ement is that the Resampler module consists of 4 layers of
MLP and 4 layers of attention mechanisms, serving as an
adaptation head to modulate the structure embedding into
the text embedding space. Subsequently, after encoding the
values and keys, new additional cross-attention layers are
integrated as follows:

attention(Q,Ktext, Vtext) + attention(Q,Kimage, Vimage).
(1)

Landmark fusion. In the Structure LLE algorithm, the fi-
nal silhouette landmark L̂sil is fused with optimal weights
w∗. A naive approach for integrating silhouette landmarks
is to directly apply linear interpolation on the binary masks
using the optimal weights w∗; however, this often results in
blurred and oversized boundaries, which may confuse the
generative model. Therefore, we adopt a compromise ap-
proach: first, we perform linear interpolation of the land-
marks using the optimal weights w∗, and then we calcu-
late the Intersection over Union (IOU) between the fused
mask and several original landmark masks. The original
mask with the highest IOU serves as the final mask to be
used. This operation effectively combines information from
multiple masks, yielding a result with maximum consensus
while preserving clear and accurate edges that correspond
to a real garment template.

4.4. Guideline for collecting retrieval database
To construct a memory database for retrieval, we base our
selection on the training set of 65,131 standard flat-lay gar-
ments. Initially, we filter approximately 15,000 samples
from the original dataset according to the principle of cat-
egory balance. Subsequently, we encode the samples into
embeddings and employ Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) [3] to cluster the
samples. This step serves to eliminate potential noisy and
non-standard data from the original dataset, thereby mitigat-
ing the adverse effects that outliers may have on retrieval
results. We then perform random downsampling on the
densely distributed samples to filter out overly similar in-
stances. Through these operations, we aim to establish a
high-quality, broadly representative standard flat-lay (em-
bedding, garment) retrieval database with relatively low re-
dundancy. By adjusting different clustering and downsam-
pling parameters, we can generate retrieval libraries of four

different scales: 1,000, 2,000, 4,000, and 8,000 samples,
which are utilized in Section 4.2 of the main body of the
paper.

4.5. Dataset
We collect a dataset named STGarment, consisting of
65,131 pairs of in-the-wild upper clothing and standard
flat lay clothing with corresponding attributes for training,
along with 1,969 pairs for testing. The in-the-wild cloth-
ing is categorized into three main display types: clothing
worn on a person, clothing laid out indoors, and clothing
hung on hangers. Fig. 6 illustrates several examples from
the dataset. Before inputting the images into the network,
all images are cropped or padded to ensure they are square
and then resized to (768, 768).

Data augmentation. Following [6], we have imple-
mented data augmentation techniques that could potentially
enhance the model’s generalization ability as well as its
color accuracy performance. Specifically, the data aug-
mentation operations include (a) horizontal flipping of im-
ages, (b) resizing standard garments and in-the-wild gar-
ments through padding (up to 10% of the image size), (c)
randomly adjusting the image’s hue within a range of -5 to
+5, and (d) randomly adjusting the image’s contrast within a
specified range (between 0.8 and 1.2 times the original con-
trast). Each of these operations occurs independently with a
50% probability. Moreover, these operations are simultane-
ously applied to both the standard garment and in-the-wild
images.

5. Preliminary
Stable diffusion. Our RAGDiffusion is an extension of
Stable Diffusion [9], which is one of the most commonly
used latent diffusion models. Stable Diffusion employs a
variational autoencoder [5] (VAE) that consists of an en-
coder E and a decoder D to enable image representations in
the latent space. And a UNet ϵθ is trained to denoise a Gaus-
sian noise ϵ with a conditioning input encoded by a CLIP
text encoder [8] τθ. Given an image x and a text prompt
y, the training of the denoising UNet ϵθ is performed by
minimizing the following loss function:

LLDM = EE(x),y,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t, τθ(y))∥22

]
,
(2)

where t ∈ {1, ..., T} denotes the time step of the forward
diffusion process, and zt is the encoded image E(x) with
the added Gaussian noise ϵ ∼ N (0, 1) (i.e., the noise la-
tent). Note that the conditioning input τθ(y) is correlated
with the denoising UNet by the cross-attention mechanism.

IP-Adapter. The Image Prompt Adapter (IP-Adapter)
is utilized to condition the Text-to-Image (T2I) diffusion



Table 2. All attributes and their values are displayed. The total of 14 clothing attributes is extracted using LLM, of which 10 contribute to
the construction of the garment structure embeddings, indicated by ∗.

Attribute Choices
Category* T-shirt, Hoodie, Shirt, Polo, Tank, Vest, Swimsuit, Sweater, Innerwear, Windbreaker, Down Jacket, Jacket,

Suit, Waistcoat, Shawl, Dress, Skirt, Knitted Coat, Leather Short Coat, Leather Long Coat, Denim Jacket,
Robe, Loungewear Top, Loungewear Dress, Sports Jacket, Knitted Cardigan, Leather Jacket

Fit* Loose, Regular, Slim
Collar* Suit, Shirt, Notched, Rounded, Ruffled, Naval, Hooded, Polo, V-neck, Square, Round, Strapless, One-

shoulder, Off-shoulder, Neckline, Stand-up, Baseball
Sleeve Length* Sleeveless, Short, Mid, Long, Extra Long
Fabric* Gauze, Tweed, Fur, Chiffon, Denim, PVC, Micro-Suede, Fleece, Corduroy, Knit, Lace, Synthetic, Stretch,

Linen, Wool, Silk, Knitting, Leather, Velvet, Fur Blend, Coated, Mixed, Special Fabric
Print Floral, Animal, Skull, Character, Paisley, Baroque, Traditional, Cartoon, Artistic, Tech, Hand-painted,

Striped, Plaid, Heart, Polka Dot, Star, Tie-dye, Camouflage, Linear, Text, Logo, Geometric, Color Block,
Mixed, 3D Floral, Floral, Solid Color, Nature Scene, Objects

Surface Texture Layered, Tied, Slit, Cutout, Ruched, Pleated, Spliced, Ruffle, Contrast Stitching, Quilted, Gathered, Ap-
plique, Overlay, Hand Decorated, Beaded, Washed, Dyed, Distressed, Frayed, Printed, Splatter, Foil, Rhine-
stone, Flocked, Embroidered, Edge Decoration, Embossed, Punched, Knit Rib, No Craft

Age Adult, Child
Gender Female, Male
Length* Extra Short, Short, Medium, Long, Extra Long, Uncertain
With Inner Wear* Yes, No
Sleeves Rolled Up* Yes, No
Top Open* Yes, No
Top Tuck In* Yes, No

model with a reference image for style control or content
indication. This is typically achieved through global con-
trol at a high-level semantic layer. Specifically, it extracts
features using an image encoder (e.g., the CLIP [8] im-
age encoder) and incorporates an additional cross-attention
layer onto the invariant text conditioning. Here, we denote
Q ∈ RN×d as the query matrices extracted from the in-
termediate features of the UNet, while Ktext ∈ RN×d and
Vtext ∈ RN×d represent the key and value matrices derived
from the prompt embeddings, where N signifies the batch
size. The cross-attention layer of the text branch is com-
puted as follows:

attention(Q,Ktext, Vtext) = softmax

(
QK⊤

text√
d

)
·Vtext. (3)

Subsequently, the IP-Adapter computes the key and value
matrices Kimage ∈ RN×d and Vimage ∈ RN×d from the em-
bedding of the reference image, and integrates the cross-
attention layers as follows:

attention(Q,Ktext, Vtext) + attention(Q,Kimage, Vimage).
(4)

During training, the weights of the original UNet are frozen,
and only the projection layers of the key and value matrices
in the image encoding branch, as well as the linear projec-

K Num. SSIM ↑ LPIPS ↓ FID ↓ KID ↓
1 0.6872 0.3761 10.27 1.198
2 0.6915 0.3703 10.32 1.190
4 0.6963 0.3684 9.990 1.092
8 0.6960 0.3681 10.01 1.090

Table 3. The number K of retrieved nearest neighbors in SLLE
impacts generation performance. It’s the source data for Fig. 6 in
the main body of the paper.

tion layer that maps the CLIP image embeddings, can be
updated.

6. Experiment

6.1. Alignment during evaluation protocols
Considering that our task can essentially be viewed as re-
constructing a standard flat lay from a conditioning image,
we investigate the potential reasons affecting the perfor-
mance of SSIM and LPIPS. As shown in Fig. 9, we find that
(1) the positioning of the generated flat-lay garment may
influence the results of SSIM and LPIPS. Due to the lack
of explicit positioning, the generated garment may deviate
from the ground truth cloth in both horizontal and vertical
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Figure 7. More visual results of ablation study.

Query images Retrieved top-4 nearset standard garments + landmarks

Figure 8. Retrieved results. We illustrate 4 nearest neighbor results along with their respective landmarks, given in-the-wild input. This
visualization aids in intuitively understanding the effectiveness of our retrieval method.

directions, or exhibit minor differences in scale, which im-
pacts SSIM and LPIPS. (2) Even when dealing with a stan-

dard flat-lay garment, there may still be some discrepancies
in the state of the garment. Factors such as the extent to
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Figure 9. We visualize the underlying reasons affecting the perfor-
mance of SSIM and LPIPS including misalignment and the state
of the garment. Factors such as the extent to which the sleeves
are spread, the shooting angle, and lighting conditions can signifi-
cantly affect the measurements of SSIM and LPIPS.

which the sleeves are spread, the shooting angle, and light-
ing conditions can affect the measurements of SSIM and
LPIPS.

To address the measurement errors caused by misalign-
ment (Reason 1), we systematically crop and align the gen-
erated images with the ground truth (GT) images according
to the bounding boxes, as illustrated in the third column of
the Fig. 9. The data presented in the tables of the main body
of the paper have all undergone this alignment process.

6.2. About ControlNet baseline
We set the in-the-wild images as the input to the Con-
trolNet conditioning branch, due to the structural aligned
mask/canny images are absent without our proposed RAG.
Actually, a straightforward ControlNet cannot handle this
task well, as the input in-the-wild images do not have struc-
tural alignment with the desired output images.

6.3. Retrieval process
We illustrate 4 nearest neighbor results along with their re-
spective landmarks, given in-the-wild input to demonstrate
the effectiveness of our retrieval method in Fig. 8. Addition-
ally, we present precise numerical results regarding how the
number K of retrieved nearest neighbors impacts genera-
tion performance in Tab. 3, which serves as the source data
for Fig. 6 in the main body of the paper.

6.4. More visual results
Fig. 7 provides more results about ablation study.
Fig. 10 provides more results on STGarment for inspection
to demonstrate that RAGDiffusion synthesizes structurally

and detail-faithful clothing assets.
Fig. 11 provides more cross dataset visual results on the
unseen dataset Viton-HD, DressCode and the untrained cat-
egories lower-body/dresses from RAGDiffusion to validate
the enhanced generalizability due to RAG.
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Figure 10. More visual results on the STGarment by RAGDiffusion. Best viewed when zoomed in.
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Figure 11. More cross dataset visual results on the unseen dataset Viton-HD, DressCode and the untrained categories lower-body/dresses
from RAGDiffusion to validate the enhanced generalizability due to RAG. Best viewed when zoomed in.
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