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Appendix

A. Dataset

The camera trajectory of each video clip from
RealEstate10K [101] is first derived by SLAM meth-
ods at lower resolution with the field of view fixed at 90→.
The authors then refine each of camera sequence using a
structure-from-motion (SfM) pipeline, performing feature
extraction, feature matching and global bundle adjustment
successively. Given the unawareness of global scene scale,
the resulted camera poses of RealEstate10K are up to an
arbitrary scale per clip. For each frame the authors compute
the 5-th percentile depth among all point depths from that
frame’s camera. Computing this depth across all cameras
in a video clip gives a set of near plane depths and the
whole scene is scaled so that the 10-th percentile of this set
of depths is 1.25m.

While using RealEstate10K’s scenes and camera tra-
jectories during inference avoids scale issues within the
dataset, challenges arise in more general cases. Specifically,
when pairing out-of-domain images with either in-domain
or out-of-domain trajectories, the inconsistencies between
training and inference scales become evident. These incon-

sistencies make it impossible to generate realistic and con-

trollable videos.

The solution lies in reconstructing an absolute-scale
scene for any given image. By leveraging metric depth pre-
dictor, we can reconstruct the absolute-scale 3D scene for
the reference image. This absolute-scale scene bridges the
gap between training and inference, enabling robust gener-
alization to real-world applications. With this alignment,
the model becomes capable of handling diverse combina-
tions of images and trajectories, ensuring consistent and re-
liable performance across various scenarios.

B. Training

We choose DynamiCrafter [76] as our image-to-video (I2V)
base model. We trained proposed method on 4 publicly
accessible variants of DynamiCrafter, namely 256, 512,
512 interp and 1024. We conduct ablation study on
resolution 256→256, due to the limitation of computing
resource. For resolution 256→256, we train all models
on ω-prediction with effective batch size 64 for 50,000
steps, taking about 50 hours. For resolution 512→320 and
1024→576, we train RealCam-I2V on v-prediction while
enable perframe ae and gradient checkpoint to
reduce peak GPU memory consumption. We apply the
Adam optimizer with a constant learning rate of 1 → 10↑4

Figure 11. Outlier filtering for noise shaping. Undesired pixels
will not be pasted in mistake for filtering kernel size k →3.

with mixed-precision fp16 and ZeRO-1.
For MotionCtrl [69] and CameraCtrl [22], we repro-

duce all results on DynamiCrafter for fair comparison. For
CamI2V [97], we implement hard mask epipolar attention
and set 2 register tokens, aligned with the original paper.
In quantitative comparison and ablation study, we set fixed
text image CFG to 7.5 and camera CFG to 1.0.

C. Depth Predictor

We choose the metric depth version of Depth Anything
V2 [81] as the metric depth predictor. Compared to their
basic versions, the authors fine-tune the pre-trained encoder
on synthetic datasets for indoor and outdoor metric depth
estimation. The indoor model is capable of monocular met-
ric depth estimation within a maximum depth of 20m. We
choose Large as the model size, which has 335.3M param-
eters, and the indoor version. The scene scale of our model
is aligned to the metric depth space of Depth Anything V2
Large Indoor, i.e. absolute scene scale.

D. Noise Shaping and Parameter Sensitivity

The noise shaping mechanism is straightforward. It over-
lays reference video features on model predictions at early
diffusion steps. Fewer times of noise shaping means less
prior imposed on layout, preserving more dynamics, and
vice versa. Tab. 4 shows that effective control is typically
achieved by selecting a threshold like tNS = 900, similar to
CFG. In practice, users only need to easily change between
{800, 900, 1000}. To enhance stability, we filter outliers of
depth prediction on edge regions, as shown in Fig. 11.



Noise Shaping Subject Background Motion Dynamic Aesthetic Imaging I2V I2V Camera
Threshold Consistency Consistency Smoothness Degree Quality Quality Subject Background Motion

/ 90.99 96.23 97.36 46.75 58.37 62.91 94.73 93.44 85.85
900 93.96 97.58 97.66 35.77 59.79 63.08 96.14 95.27 93.32
800 95.02 97.91 97.79 26.42 60.07 63.33 96.53 95.73 95.15
600 95.10 98.02 97.80 27.64 60.21 63.85 96.55 95.72 96.72

Table 4. Evaluation results of noise shaping threshold tNS. For noise level t ↑ [0, 1000], the threshold tNS denotes that we apply noise
shaping only when t > tNS in early denoising process.

Model Subject Background Motion Dynamic Aesthetic Imaging I2V I2V Camera
Consistency Consistency Smoothness Degree Quality Quality Subject Background Motion

CogVideoX 1.5 [83] 91.80 94.66 97.07 40.98 62.29 70.21 96.46 95.50 39.71
w. RealCam-I2V (Ours) 97.81 98.41 99.33 44.31 64.31 70.70 99.03 99.40 91.35

Table 5. VBench-I2V results of RealCam-I2V trained on RealCam-Vid [98], with scene dynamics and large camera movements (near
360→). The improvement in metrics can be attributed to the additional information from diverse camera traces in dynamic scenes. Noise
shaping significantly improves the consistency and quality.

E. Robust Analysis of Depth Estimation, SfM,

Base Model and Resolution

Our framework demonstrates robustness across variations
in depth predictors, SfM, base models, and high resolution.
The primary goal of our depth alignment is to establish a
unified metric space. This ensures that even if absolute
depth values from predictors have errors, these errors are
consistently propagated during alignment for both training
and inference data. Consequently, there is no gap between
training and inference despite inevitable errors from depth
prediction and scale alignment. The method can function
even with less accurate metric depth predictors, though bet-
ter predictors naturally enhance performance of our frame-
work.

To further address this, we reproduce our method on
RealCam-Vid [98], a high-resolution video dataset with dy-
namic scenes and metric-scale cameras. We’ve successfully
used both Depth Anything V2 [81] (metric indoor, 20m)
and, in RealCam-Vid, Metric 3D v2 [28] (200m), show-
ing strong adaptability to a different depth predictor, un-
derscoring its robustness to depth estimation errors. Our
method works with both UNet-based (DynamiCrafter) and
DiT-based (CogVideoX 1.5 [83] in Tab. 5) backbones with
higher resolution. We also explored different SfM tools
(e.g., GLOMAP [48] and MonST3R [90]) and found con-
sistent performance.

F. Real-time User Interface

Fig. 5 in main paper illustrates our shift from slow, multi-
round generation to an efficient one-round workflow, signif-
icantly enhancing usability. Users intuitively design cam-
era paths by dragging within the reconstructed 3D scene,
which is more direct than 2D or numerical input. Users re-
ceive real-time preview feedback, rendered in parallel and
streamed for immediate visualization, which is optional,

Figure 12. Camera Trajectory Interpolation. We interpolate
camera keyframes given by user to dense trajectories.

catering to different preferences. Our interactive preview is
designed for nearly real-time feedback. Monocular depth
estimation is efficient. For preview videos (e.g., 8 sam-
pled keyframes), each frame is rendered independently us-
ing modern engines (e.g., Open3D [100]) in a parallel man-
ner. This allows streaming playback, achieving real-time in-
teraction. Further engineering optimization ensures a fluid
user experience.

G. Camera Keyframe Interpolation

In real-world applications, user-provided camera trajecto-
ries often consist of a limited number of keyframes (e.g.,
4 keyframes). To ensure smooth and continuous motion
across the trajectory while adhering to the user’s input, we
perform linear interpolation in SE(3) space to expand the
trajectory to a higher number of frames (e.g., 16 interpo-
lated frames), as shown in Fig. 12. This step ensures that
our model generates consistent and visually coherent videos
without compromising the accuracy of user-defined camera
movements.
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