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Figure 9. Comparison of initial clustering error between VQ and
SSVQ.

9. Analysis of initial clustering error

Although storing the sign bit requires an additional 1 bit,
our method does not introduce extra storage overhead. After
extracting the sign bits, we can cluster the absolute values of
the weights. Naturally, the similarity among non-negative
weights is higher, so we only need fewer bits for cluster in-
dexing. In Fig. 9, we compare the initial clustering errors of
SSVQ and VQ. The results show that under the same com-
pression rate, their clustering errors are comparable, which
validates our hypothesis.

10. Further analysis with dimension

We further investigate the impact of quantization dimen-
sionality. While prior work [19, 28, 39, 44] has demon-
strated that increasing quantization dimensionality im-
proves model accuracy under fixed index bits, this approach
introduces significant scalability challenges. Specifically,
when doubling the dimensionality from d to 2×d with con-
stant index bits, the codebook size expands exponentially by
2d times. This substantial expansion makes the codebook a
critical factor in compression ratio computation, potentially
offsetting the benefits of higher-dimensional quantization.

The codebook storage impact is particularly pronounced
in compact architectures like MobileNet and DeiT-Tiny.

As shown in Fig. 5, VQ achieves optimal performance at
d=4, while SSVQ performs best at d=8. For larger models
(DeiT-Small and ConvNext-Tiny), VQ demonstrates better
accuracy-compression trade-offs at d=8. To further explore
SSVQ’s scalability, we present additional results at d=16 for
these larger architectures, revealing its superior adaptability
to higher-dimensional quantization.

11. Effect of Hessian weighted k-means
SqueezeLLM [15] employs Hessian-weighted initializa-
tion. Specifically, its objective function is designed to min-
imize the final task loss caused by quantized weights

δL = L(W )− L(Ŵ ) (10)

We can achieve this objective through Hessian matrix ap-
proximation. Assuming that Ŵ represents a small perturba-
tion on W, we perform a second-order Taylor expansion on
Eq. 10 to obtain:

δL ≈ gT (W − Ŵ ) +
1

2
(W − Ŵ )TH(W − Ŵ ) (11)

Here, g is the gradient, and H is the Hessian matrix of
the weights (the second derivative of the Loss with respect
to the weights). Assuming the pretrained model has con-
verged, the gradient can be approximated as zero. Further-
more, we can approximate H by retaining only its diagonal
elements (which typically dominate).

δL ≈
∑
i

Hii∥wi − cA(i)∥2 (12)

We observed that this approach significantly benefits
LLMs, but fails to demonstrate clear advantages over stan-
dard k-means on vision-related tasks, especially after fine-
tuning. Thus, we retain standard k-means in other experi-
ments.

12. Detailed quantization settings.
In this section, we listed the detailed quantization settings of
our experiments, specifically k and d. Classification tasks
(Tab. 10), detection and segmentation tasks (Tab. 11), image
generation and nlp tasks (Tab. 12).

13. More results on image generation tasks
13.1. Comparison on visual similarity
To provide a comprehensive evaluation of generation con-
sistency, we introduce visual similarity metrics as com-
plementary assessment criteria. Specifically, we employ



SSVQ, d=8

k 8 16 32 64 128

MobileNet-v2 22.9 20.7 18.6 16.6 -
MobileNet-v3 23.2 21.3 19.6 18.1 16.7

EfficientNet-lite0 23.0 20.9 19.0 17.2 -
ConvNext-Tiny 23.2 21.3 19.6 18.1 16.8

DeiT-Tiny 23.1 21.1 19.2 17.5 15.8
DeiT-Small 23.2 21.3 19.6 18.1 -

VQ, d=4

k 32 64 128 256 -

MobileNet-v2 - 20.1 16.6 - -
MobileNet-v3 23.5 18.7 - - -

EfficientNet-lite0 - 20.6 17.2 - -
ConvNext-Tiny - 21.2 18.1 - -

DeiT-Tiny - 20.8 17.5 - -
DeiT-Small - 21.2 18.1 - -

VQ, d=8

k 128 256 512 1024 2048

MobileNet-v2 - - 20.9 16.2 -
MobileNet-v3 19.8 - - - -

EfficientNet-lite0 - 17.8 - -
ConvNext-Tiny - - 25.6 21.6 18.1

DeiT-Tiny - 24.7 18.6 - -
DeiT-Small - - - 25.1 20.7

Table 10. k&d settings and corresponding compression ratios of
classification tasks (Fig. 5). Notably, results with compression ra-
tios ≤16× or unacceptably low accuracy are omitted from the fig-
ure.

Models Methods k d C.R.

Yolo-v9 VQ 64 4 19.67
SSVQ 16 8 20.47

Gelan-C VQ 64 4 20.98
SSVQ 16 8 21.15

Table 11. k&d settings and corresponding bits/weight of detection
and segmentation tasks (Tab. 5).

three widely-adopted measures: SSIM (structural similar-
ity), LPIPS (learned perceptual image patch similarity),
and PSNR (peak signal-to-noise ratio), maintaining consis-
tency with the evaluation protocol used in EMF [18]. As
demonstrated in Tab. 13, our SSVQ framework achieves an
average improvement of 10% in visual similarity metrics
compared to the standard VQ baseline, highlighting its en-
hanced capability in preserving visual fidelity.

Methods k d Index bit Mask bit Total bit

VQ 1024 4 2.5 0 2.5
VQ 256 4 2 0 2

SSVQ 64 4 1.5 1 2.5
SSVQ 256 8 1 1 2

Table 12. k and d settings and corresponding bits/weight of gen-
eration (Tab. 6) and NLP tasks (Tab. 7).

Prompts Methods LPIPS↓ SSIM↑ PSNR ↑
Stable Diffusion v1-4

COCO
Prompts

EMF [18] 0.77 0.34 11.1
VQ 0.56 0.44 12.5

SSVQ 0.51 0.49 13.4

SD
Prompts

EMF [18] 0.66 0.42 12.8
VQ 0.56 0.46 13.5

SSVQ 0.49 0.51 14.8

Stable Diffusion v2-1

COCO
Prompts

EMF [18] 0.66 0.39 11.5
VQ 0.59 0.44 12.7

SSVQ 0.48 0.50 13.8

SD
Prompts

EMF [18] 0.72 0.30 10.9
VQ 0.64 0.46 13.3

SSVQ 0.52 0.48 14.4

Stable Diffusion v3

COCO
Prompts

EMF [18] 0.72 0.38 9.6
VQ 0.59 0.42 10.4

SSVQ 0.54 0.48 11.0

SD
Prompts

EMF [18] 0.75 0.28 6.80
VQ 0.64 0.34 9.40

SSVQ 0.58 0.40 9.90

Table 13. Visual similarity results on three stable diffusion models.
↓ means lower is better. ↑ means higher is better

13.2. Visual results

To provide intuitive visual comparisons, Fig. 10 illustrates
the qualitative results under extreme low-bit quantization.
Our analysis reveals that aggressive quantization in diffu-
sion models leads to three characteristic degradation pat-
terns: (1) structural distortion in scene layout, (2) color
bleeding and object disappearance, and (3) object blending
artifacts. Notably, our SSVQ framework demonstrates re-
markable robustness against these degradation effects, sig-
nificantly mitigating image quality deterioration even at
ultra-low bit rates.
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Figure 10. Visualization of image generation results of full-precision and quantized Stable Diffusion models. Qualitative comparisons un-
der COCO and Stable Diffusion prompt styles demonstrate SSVQ’s superior generation quality and prompt consistency over conventional
VQ.



Models batch size lr lr mask epochs θ Optimizer

Classification

MobileNet-V2 256 2e-3 2e-4 10 1 AdamW
MobileNet-V3 256 2e-3 2e-4 10 1 AdamW

EfficientNet-Lite0 256 2e-3 2e-4 10 1 AdamW
ConvNext-Tiny 256 2.5e-4 2.5e-4 10 4 AdamW

DeiT-Tiny 256 2.5e-4 2.5e-4 10 6 AdamW
DeiT-Tiny 256 2.5e-4 2.5e-4 10 4 AdamW

Semantic Segmantation

DeepLab-V3 8 5e-4 5e-4 100 10 AdamW

Object Dection

YOLO-V9 16 1e-3 1e-3 10 4 AdamW

Instance Segmantation

GELAN-C-SEG 32 1e-3 1e-4 10 8 AdamW

Image Generation

Stable Diffusion v1.4 12 1e-4 2e-4 10000 iters 1 AdamW
Stable Diffusion v2.1 12 1e-4 2e-4 10000 iters 1 AdamW
Stable Diffusion v3 2 1e-4 5e-5 10000 iters 1 AdamW

Table 14. Detailed hyper parameter settings of our experiments

13.3. Training hyper parameters
Detailed training hyper parameters, including batch size,
learning rate, threshold, optimizer, and epochs are summa-
rized in Tab. 14.


