A. Additional Experimental Settings and Re-
sults

A.1. Datasets

As briefly discussed in §4.1, we evaluate our method across
five datasets: HMDB51 [21], UCF101 [39], Kinetics-600
[20], HAC [9], and EPIC-Kitchens [6].

1) HMDBS51 [21] is a video action recognition dataset con-
taining 6,766 video clips across 51 action categories. The
clips are sourced from various media, including digitized
movies and YouTube videos, and include both video and
optical flow modalities.

2) UCF101 [39] is a diverse video action recognition
dataset collected from YouTube, containing 13,320 clips
representing 101 actions. This dataset includes variations in
camera motion, object appearance, scale, pose, viewpoint,
and background conditions. It provides video and optical
flow modalities.

3) Kinetics-600 [20] is a large-scale action recognition
dataset with approximately 480,000 video clips across 600
action categories. Each clip is a 10-second snippet of an an-
notated action moment sourced from YouTube. Following
[10], we selected a subset of 229 classes from Kinetics-600
to avoid potential overlaps with other datasets, resulting in
57,205 video clips. Video and audio modalities are avail-
able, with optical flow extracted at 24 frames per second
using the TV-L1 algorithm [49], yielding 114,410 optical
flow samples.

4) HAC [9] includes seven actions—such as ‘sleeping’,
‘watching TV’, ‘eating’, and ‘running’—performed by hu-
mans, animals, and cartoon characters, with 3,381 total
video clips. The dataset provides video, optical flow, and
audio modalities.

5) EPIC-Kitchens [6] is a large-scale egocentric video
dataset collected from 32 participants in their kitchens as
they captured routine activities. For our experiments, we
use a subset from the Multimodal Domain Adaptation pa-
per [35], which contains 4,871 video clips across the eight
most common actions in participant P22’s sequence (‘put,’
‘take,” ‘open,’ ‘close, ‘wash, ‘cut, ‘mix, and ‘pour’). The
available modalities include video, optical flow, and audio.

A.2. Tasks

As briefly discussed in §4.2, we evaluate our method on two
tasks: Near-OOD detection, and Far-OOD detection [10].
For Near-OOD detection, we evaluate using four
datasets. In EPIC-Kitchens 4/4, a subset of the EPIC-
Kitchens dataset is divided into four classes for training
as ID and four classes for testing as OOD, totaling 4,871
video clips. HMDBS51 25/26 and UCF101 50/51 are simi-
larly derived from HMDBS51 [21] and UCF101 [39], con-
taining 6,766 and 13,320 video clips, respectively. For
Kinetics-600 129/100, a subset of 229 classes is selected

from Kinetics-600 [20], with approximately 250 clips per
class, totaling 57,205 clips. In this setup, 129 classes are
used for training (ID) and the remaining 100 for testing
(OOD). We present the results of {video, optical flow} on
all four datasets, and the results of {video, optical flow, au-
dio} on Kinetics-600 dataset.

In the Far-OOD detection setup, either HMDB51 or
Kinetics-600 is used as the ID dataset, with the other
datasets serving as OOD datasets:

HMDBS1 as ID: We designate UCF101, EPIC-Kitchens,
HAC, and Kinetics-600 as OOD datasets. Samples overlap-
ping with HMDBS1 are excluded from each OOD dataset to
maintain distinct ID/OOD classes. For instance, 31 classes
overlapping with HMDBS51 are removed from UCF101,
leaving 70 OOD classes, and 8 overlapping classes are re-
moved from EPIC-Kitchens and HAC.

Kinetics-600 as ID: We designate UCF101, EPIC-
Kitchens, HAC, and HMDBS51 as OOD datasets, excluding
any ID class overlap with Kinetics-600. For example, 11
overlapping classes are removed from UCF101, leaving 90
OOD classes, while the original classes in EPIC-Kitchens,
HAC, and HMDB5S1 are preserved as they have no overlap
with Kinetics-600.

A.3. Baseline Design

As briefly discussed in §4.2, we compare SecDOOD against
traditional on-device training classifiers combined with var-
ious post-hoc OOD detection methods. Additionally, we de-
sign two alternative baselines that do not require on-device
training to further analyze the effectiveness of our approach.

For the OOD detection methods, we extend several es-
tablished techniques to the multimodal setting, including
MSP [15], Energy [31], MaxLogit [16], Mahalanobis [22],
ReAct [40], ASH [7], GEN [32], KNN [41], and VIM
[44]. These methods span multiple levels of OOD scoring,
ranging from probability-based approaches (MSP, GEN),
logit-based techniques (Energy, MaxLogit), and feature-
space methods (Mahalanobis, KNN) to activation manipu-
lation strategies (ReAct, ASH) and hybrid logit-feature ap-
proaches (VIM).

For the newly designed baseline methods, Ini-Classifier
denotes a randomly initialized classifier that is used di-
rectly for inference without any training or fine-tuning. In
contrast, Ini-Hypernetwork refers to a randomly initialized
Hyper-Network that generates classifier parameters based
on extracted visual features.

A 4. Implementation Details

As briefly discussed in §4.2, Near-OOD and Far-OOD tasks
share the batch size of 16, the Adam optimizer, and the
learning rate of 0.0001. In addition, the machine we used in
the experiments is as follows:



No Mask Mask 50% Channels Mask 75% Channels

Methods

FPR95, AUROCT FPR95, AUROCT FPR95, AUROCYT

HMDB as ID

Kinetics ~ 21.89 94.29 15.39 96.06 43.79 89.97

UCF 52.79 81.93 46.18 86.19 68.76 74.61
HAC 29.42 94.02 22.35 94.41 29.76 93.91
Kinetics as ID

HMDB 69.67 78.09 69.52 79.25 70.19 75.66
UCF 69.63 72.98 69.34 75.37 70.89 72.84
HAC 68.01 76.81 58.32 84.98 69.36 76.29

Table A. Far-OOD Detection results using various mask propor-
tions (1 higher is better; | lower is better).

GPU server with AMD EPYC Milan 7763, 64x16=1TB
DDR4 memory, 15 TB SSD, 6x NVIDIA RTX A6000 Ada.

The encryption time was measured on a MacBook Pro
with M1 Pro.

For the Near-OOD tasks and for Far-OOD tasks with
HMDB as the ID dataset (excluding Kinetics), the hyper-
network is configured as a single layer—there is no hid-
den layer. The weight matrix W of size (num feature x
num class) and the bias b of size (num class) are directly
derived from the input features, with a batch normalization
applied before the parameter output.

For the Near-OOD and Far-OOD tasks with Kinetics as
the ID dataset, the hypernetwork is configured with two
layers, where the hidden layer dimension is set to 3584
for Near-OOD and 2048 for Far-OOD. In this case, the
parameters undergo batch normalization at the latent vari-
able stage before output; the weight matrix W of size
(num feature x num class) and the bias b of size (num class)
are the results after the second batch normalization.

A.5. Additional Results

As discussed in §4.4, we present additional experimental
results to further analyze the impact of different masking
percentages.

Tab. A summarizes the model’s performance under var-
ious masking conditions. Interestingly, we observe that ap-
plying a 50% masking ratio results in only a slight perfor-
mance degradation. This finding suggests that our dynamic
channel sampling approach effectively removes noisy or re-
dundant channels while maintaining the model’s overall ca-
pability. We attribute this robustness to the efficiency of our
sampling strategy, which dynamically selects the most in-
formative channels, thereby mitigating the negative impact
of extensive masking. Furthermore, this result provides ad-
ditional evidence for the resilience of the hypernetwork, as
it demonstrates that the model does not rely on highly spe-
cific input features to perform well.

Tab. B presents the communication latency for different

Datasets Size 4G: 4G: 5G: 5G:
SMB/s 15MB/s 50MB/s 100MB/s
Near-OOD
HMDB 1:0.18MB | 1T: 144ms | 1: 48 ms 1T: 14 ms T: 7ms
$:475MB | [:950ms | |:317ms 1:95ms 1:48ms
UCF 1:0.18MB | 1: 144ms | T: 48 ms T: 14 ms 1: 7ms
1:9.40MB | J: 1880ms | |: 627 ms J: 188 ms 1:94ms
Kinetics 1:0.18MB | 1: 144ms | T: 48 ms 1: 14 ms 1: 7ms
1:24.17MB| |: 4834ms | |: 1611 ms | |:483 ms 1:242ms
EPIC 1:0.18MB | 1: 144ms | T:48ms 1T: 14ms 1: 7ms
1:0.79MB | |: 158 ms | |: 53 ms 1: 16 ms 1: 8ms
Far-OOD
HMDB 1:0.18MB | 1: 144ms | 1: 48 ms 1T: 14 ms T: 7ms
1:8.08MB | |:1616ms | |: 539 ms 1:162ms 1:81ms
Kinetics 1:0.18MB | T: 144ms | T: 48 ms T: 14ms T: 7ms
1:42.81 MB| J: 8562ms | |:2854ms | |: 856 ms 1: 428 ms

Table B. Time delay with updated encryption/decryption method
and separated upload/download speeds. (1) denotes upload from
device to cloud, (J) denotes download from cloud to device. The
upload speed is assumed to be 1/4 of the download speed.

datasets under various network conditions, considering an
updated encryption/decryption method. The upload speed is
assumed to be one-fourth of the download speed, reflecting
typical mobile network conditions. The results show that
4G networks with a SMB/s download speed incur the high-
est delays, especially for large datasets such as Kinetics,
where the download time reaches 8.56 seconds. In contrast,
5G networks significantly reduce latency, with the fastest
configuration (100MB/s) achieving sub-500ms downloads
for most cases. The encryption/decryption overhead is min-
imal, as observed in the slight increase in total transmission
time. These findings highlight the benefits of high-speed
networks for cloud-assisted OOD detection, particularly in
handling large datasets efficiently.
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