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Supplementary Material

Implementation of the gating network The gating net-
work G in our DMoME framework is designed with a
generic and efficient architecture to ensure adaptability
across diverse tasks and modalities. At a high level, it con-
sists of a feature extraction block (e.g., 2D or 3D convo-
lutional neural networks (CNNSs), transformers, etc.), fol-
lowed by a linear layer that generates low-dimensional
weight vectors. This architecture strikes a balance between
simplicity and flexibility, enabling it to adjust modality con-
tributions effectively across tasks. Furthermore, its modu-
lar design allows seamless accommodation of varying task
requirements and diverse input modalities, ensuring broad
applicability and adaptability.

As shown in Table A1, for the BraTS 2018 segmentation
task, the input modalities are four input imaging modali-
ties (4 x 128 x 128 x 128 with zeros if certain modali-
ties are missing). Here, since they are all images sharing
the same dimensionality, we simply extract 256 — dim fea-
tures using a 5-layer 3D CNN to directly fuse visual in-
formation and send the features to an linear layer to get a
4 x 3 gating vector (# modalities x #tasks). The vector
will be transformed using the softmax function to gener-
ate gating weights, which adjust the contribution of each
modality per task. In contrast, the avMNIST classification
task involves heterogeneous modalities: the image modal-
ity (1 x 28 x 28) and the audio modality (1 x 20 x 20). To
account for this heterogeneity, two separate 2-layer CNNs
are used to extract 128-dimensional feature vectors for each
modality. These features are concatenated to form the same
size of 256 — dim representation, which is then processed
by a similar linear layer to generate a 2 x 1 gating vector.
This modular approach ensures flexibility and robust feature
integration across diverse data types.

In this work, we simply designed these two lightweight
gating networks empirically, which provides substantial im-
provements. Thanks to the flexibility of the framework,
readers are encouraged to explore more advanced architec-
tures for their customized tasks.

Importance of the design choice and the training recipe

in SimMLM In this section, we would like to highlight

the contribution of pretraining and dynamic weighting by
comparing our proposed DMoME with its two variants:

* DMoME w/o expert pretraining: Here, all modality ex-
perts and the gating network GG were directly co-trained
from random initialization, without pretraining. The to-
tal number of training epochs is the same as the proposed

General design BraTS 2018 avMNIST
4-modality MRIs image audio
4 x 1283 1x282 | 1x202
Feature extractor S-layer 2-layer 2-layer
CNNs (3D) CNNs (2D) | CNNs (2D)
Flatten Flatten & concat

256-dim feature 256-dim feature
Linear layer Linear layer
Output size: 4 X 3 Output size: 2 X 1
(4 modalities x 3 tasks) [ (2 modalities x 1 task)

Linear layer

Table Al. Designs of the gating network G for the BraTS 2018
segmentation task and the avMNIST classification task.

Dice score T
Method ET TC WT

DMOoME w/o expert pretraining 6224 7742 86.63
DMOoME w/ static averaging 61.40 77.49 86.70
DMoME w/ dynamic weighting (SimMLM) 63.22 78.54 87.21

Table A2. Importance of the design choice and the training recipe
in SimMLM. Reported values are the average segmentation per-
formance on the BraTS 2018 validation set, across all missing &
full modality settings.

two-stage one for fair comparison.

* DMoME w/ static averaging: In this setting, the gating
network G is replaced with a simple static averaging oper-
ation. The final output can be simply viewed as the mean
of the available modality experts’ outputs.

Results in Table A2 demonstrate that both expert pretrain-

ing and dynamic reweighting contribute to the success of

SimMLM. Skipping expert pretraining (DMoME w/o ex-

pert pretraining) results in a noticeable performance drop,

highlighting the critical role of independent pretraining.

This step enables modality experts to focus on task-relevant

knowledge without interference from cross-expert interac-

tions, which could be noisy especially at the beginning of
training. Replacing the dynamic gating mechanism with
static averaging (DMoME w/ static averaging) also causes

a significant performance drop across all subregions (ET,

TC, WT). This underscores the effectiveness of dynamically

assigning weights to modality experts, which is not just a

simple model ensembling strategy.

Impact of performing dynamic weighting at different
levels in DMoME As shown in Figure Al, we propose
a simple yet effective mixture of modality experts strategy,
which directly applies expert weighting at the logit level
(before softmax) instead of probabilities.
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Figure Al. Three types of weighted sum micro design: feature-
level, logit-level (SimMLM), and probability-level.

Here, we tested the importance of this design choice, by
comparing it to the other two alternatives with the same gat-
ing network design:

* Feature-level mixture: Here, the dynamic weighting is
applied at hidden feature maps (before passing through
the segmentation/classification head) rather than the out-
put space, which is adopted in MoMKE [3]. The fea-
ture maps from modality experts are later mixed with the
weights produced by the gating network. A segmenta-
tion head is followed to generate the final results given
the mixed feature map.

* Probability-level mixture: Here the dynamic weighting
is applied to the probabilities from each expert (after soft-
max).

Results in Table A3 show that performing logit-level mix-

ture generally achieves better results, especially on the more

challenging enhancing tumor (ET) and tumor core (TC)
segmentation tasks. We believe this improvement stems
from SimMLM’s logit-level weighting, where the weight-
ing parameter functions as a temperature to rescale the
confidence of each modality’s prediction in the final out-
put. This approach aligns with the principles of tempera-
ture rescaling [1] for model calibration, which can effec-
tively adapt model predictions to better reflect the likeli-
hood of ground truth correctness, leading to more reliable
multi-modal inference especially in challenging scenarios.

In our main paper, we have already demonstrated that our

DMOoME framework, when used standalone, can achieve

much lower calibration errors compared to MOMKE in Ta-

ble 5, thanks to the logit-level dynamic weighting.

Dice score 1
Method ET TC WT

Feature-level mixture 62.76  78.19 87.27
Probability-level mixture 6272 78.31 87.33
Logit-level mixture (SimMLM) 63.22 78.54 87.21

Table A3. Importance of performing dynamic weighting at logit
level. Reported values are the average segmentation performance
on the BraTS 2018 validation set, across all missing & full modal-
ity settings.

SimMLM'’s robustness against varied levels of miss-
ing modalities at training time To further investigate
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Figure A2. Model performance comparison with varying rates of
missing audio data during training on av-MNIST.
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Figure A3. MoFe weight A\ tuning on avMNIST, UPMC Food-
101.

SimMLM’s resilience to training-time missingness, we con-
ducted experiments where the audio coverage rate was re-
duced to 5%, 10%, 20%, 30%, 50% during the training.
We then evaluated the model on the full modality evalua-
tion set and compared its performance to ShaSpec [2] and
MoMKE [3]. As shown in Figure A2, our model consis-
tently achieves the highest accuracy in all settings, demon-
strating substantial improvement in handling training-time
modality absence. Remarkably, our model achieves even
better accuracy comparable to competing methods that use
50% of the audio data, with only 30% of it during train-
ing (see red dashed line). These results demonstrate our
method’s potential to handle training-time modality miss-
ingness as well.

MoFe coefficient tuning on avMNIST and UPMC Food-
101 Setting the MoFe loss coefficient to 0.1 generalizes
well across tasks. As shown in Fig. A3, where MoFe consis-
tently improves performance across a range of values, with
0.1 yielding stable results.

Discussion: How well does the unimodal performance
align with the importance derived from the learned gat-
ing weights? Interestingly, the gating weights show weak
to moderate alignment with unimodal performance at the
sample level. On UPMC Food-101, the Pearson correlation
between each modality’s gating weight and its unimodal
confidence on the correct class is 0.29 for image and 0.41



for text. This partial alignment suggests that while uni-
modal confidence reflects individual modality strength, it
may not fully capture cross-modal complementarity or sam-
ple difficulty—both of which influence the model’s reliance
during inference. We consider this behavior desirable, as it
indicates the gating mechanism is context-aware rather than
simply mirroring unimodal confidence.

Clinical value of SimMLM In real-world clinical sce-
narios, especially in low-resource settings, certain imag-
ing modalities may be unavailable due to technical issues,
equipment limitations, or patient factors. SImMLM'’s abil-
ity to generate more reliable and accurate segmentation un-
der these conditions is essential. The model not only pro-
vides direct importance values for each input modality but
also generates more informative confidence maps, includ-
ing entropy maps, for voxel-wise predictions in the out-
put space. This capability is particularly valuable in criti-
cal applications like tumor detection and diagnosis, where
accurate and detailed segmentation is crucial for treatment
planning and patient care. By enabling clinicians to make
confident decisions—whether by providing insights or sug-
gesting further investigation or special care for uncertain re-
gions—even in the presence of incomplete data, SimMLM
greatly enhances the robustness and reliability of clinical
workflows. In the future, we will explore SInMLM’s ap-
plication in broader, high-stakes scenarios, such as surgi-
cal scene reconstruction, action segmentation, and surgical
planning.
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