
A. Related Works

This section provides a brief overview of the studies rele-

vant to our work, focusing on data-driven quantization and

zero-shot quantization.

Data-driven Quantization Post-training quantization

(PTQ) and quantization-aware training (QAT) [27, 44]

are the most commonly employed quantization methods.

PTQ methods typically utilize a small calibration set,

often a subset of the training data, to optimize or fine-tune

quantized networks [17, 18]. For instance, AdaRound

[42] introduced a layer-wise adaptive rounding strategy,

challenging the quantizers of rounding to the nearest value.

Additionally, BRECQ [30] implemented block-wise and

stage-wise reconstruction techniques, striking a balance

between layer-wise and network-wise approaches. QDrop

[53] innovatively proposed randomly dropping activation

quantization during block construction to achieve more

uniformly optimized weights. Despite their simplicity

and minimal data requirements, PTQ methods often face

challenges related to local optima due to the limited

calibration set available for fine-tuning. On the other hand,

most QAT approaches leverage the entire training dataset

to quantize networks during the training process [25].

PACT [8] introduced a parameterized clipping activation

technique to optimize the activation clipping parameter

dynamically during training, thereby determining the ap-

propriate quantization scale. LSQ [15] proposed estimating

the loss gradient of the quantizer’s step size and learning

the scale parameters alongside other network parameters.

LSQ+ [2], an extension of the LSQ method, introduced a

versatile asymmetric quantization scheme with trainable

scale and offset parameters capable of adapting to negative

activations. Both QAT and PTQ methods rely on training

data for quantization, rendering them impractical when

faced with privacy or confidentiality constraints on the

training data.

Zero-shot Quantization Zero-Shot Quantization (ZSQ)

is a valuable approach that eliminates access to real training

data during the quantization process. Presently, most ZSQ

research is confined to classification tasks. Data-free quan-

tization (DFQ) represents a subset of ZSQ methods that en-

able quantization without relying on any data. For instance,

DFQ [41] introduced a scale-equivariance property of acti-

vation functions to normalize the weight ranges across the

network. SQuant [19] developed an efficient data-free quan-

tization algorithm that does not involve back-propagation,

utilizing diagonal Hessian approximation. However, due to

the absence of data, DFQ methods may not be suitable for

low-bit-width configurations. For example, in the case of

4-bit MobileNet-V1 on ImageNet, SQuant achieved only

10.32% top-1 accuracy. Another branch of ZSQ meth-

ods leverages synthetic data [5, 29] generated by the full-

precision network. GDFQ [50] introduced a knowledge-

matching generator to synthesize label-oriented data using

cross-entropy loss and batch normalization statistics (BNS)

alignment. TexQ [6] emphasized the detailed texture fea-

ture distribution in real samples and devised texture calibra-

tion for data generation. Recently, the latest works extended

ZSQ to more downstream tasks including object detection.

PSAQ-ViT V2 [32] introduce an adaptive teacher–student

strategy to the patch similarity metric in PSAQ-ViT and

generate task-agnostic images to fine-tune the quantized

model with knowledge distillation for segmentation and ob-

ject detection. Similarly, MimiQ [10] proposed inter-shead

attention similarity and apply head-wise structural atten-

tion distillation to align the attention maps of the quan-

tized network to those of the full-precision teacher across

downstream tasks. CLAMP-ViT [48] employed a two-stage

approach, cyclically adapting between data generation and

model quantization for classification and object detection

tasks. However, the synthetic images they use in down-

stream tasks are task-agnostic, without containing the spe-

cific information required for the corresponding task. Our

work validates task-specific image lifting performance of

quantized model, yielding state-of-the-art results in ZSQ for

object detection.

B. Implementation Details

We report mAP and mAP50 on the validation sets of MS-

COCO 2017 [33] and Pascal VOC [16] for the object de-

tection task. Our replication experiments not only contain

one-stage YOLO networks such as classic YOLOv5 and re-

cent YOLO11 networks, but also include two-stage Mask

R-CNN networks with both ResNet and Transformer-based

backbones. All experiments are conducted using a pre-

trained model as the teacher. The YOLOv5/YOLO11 ex-

periments are executed on two NVIDIA GeForce RTX 4090

GPUs, while the Mask R-CNN/ViT experiments are con-

ducted on 4 and 8 GPUs, respectively.

B.1. Adaptive Label Sampling

While theoretically merging labels and image updates into a

single stage seems feasible, our experiments in Section C.1

indicate that a continuously evolving target can negatively

impact the quality of the final generated images. To address

this issue, we first conduct a rapid adaptive label sampling

at a low resolution (160) and then use the fixed labels to

generate high-resolution images (640). We also provide de-

tails of the initial label random generation in adaptive label

sampling in Table 6, and an outline of the overall algorithm

in Algorithm 1. Fig. 5 provides a visual representation of

the algorithm’s process.



Table 6. Bounding box sampling details: we start by sampling

one object Y for each image, where C represents the number of

categories. We assume that the relative width and height of the

image are both 1. Wmin and Hmin are set to 0.2, while Wmax and

Hmax are set to 0.8. U denotes uniform distribution.

Variable Sampling Distribution Description

Y[i,0] - Batch index

Y[i,1] U(0, C) Category

Y[i,2] U(W/2, 1−W/2) Bounding box x-center

Y[i,3] U(H/2, 1−H/2) Bounding box y-center

Y[i,4] U(Wmin,Wmax) Bounding box width

Y[i,5] U(Hmin, Hmax) Bounding box height

Algorithm 1 Adaptive Label Sampling Algorithm

Input: current stage image and labels {img, tgts}, pre-trained detec-

tion network teacher, filtering threshold: confidence conf thresh,

iou iou thresh

1. new tgts = teacher(img).predictions[conf > conf thresh]
2. ious = IOU(new tgts, tgts)
# Add labels that do not overlap with the existing labels.

3. add tgts = new tgts[(max(ious, dim = 1) < iou thresh)]
# Remove labels from the existing list that are not detected by teacher.

4. minus tgts = (max(ious, dim = 0) < iou thresh).bool()
5. tgts = tgts[∼ minus tgts]
6. tgts = cat([tgts, add tgts], dim = 0)

B.2. Calibration Set Generation

We apply Eq. 6 and set the optimal trade-off parame-

ters for {αdetect, αBN , αTV , αl2} as {0.5, 0.01, 0, 5e-4}
for the YOLOv5 series model, {1e-3, 1e-3, 0, 5e-5} for

the YOLO11 series model, {5.0, 2e-3, 0, 1.5e-5} for

CNN-backbone Mask R-CNN model and {10.0, 1.0, 0,

1e-3} for Transformer-backbone Mask R-CNN model.

We generate Xinv by optimizing the cost function for

2500/3000/8000/4000 iterations for YOLOv5 series model,

YOLO11 series model, CNN-backbone Mask R-CNN

model and Transformer-backbone Mask R-CNN model re-

spectively. We use Adam as the optimizer with an initial

learning rate of 1e-2, adjusted by cosine annealing [36]. We

also use cutout [12] as a data augmentation method to en-

hance the diversity of the synthetic calibration set.

B.3. Quantization Aware Training

Since the original LSQ is only evaluated in classifica-

tion tasks on ImageNet, we extended it to object detec-

tion tasks. For each of our networks, LSQ is attached to

all internal layers except the first and last layers following

[15]. Our training data are from the synthesized calibra-

tion set aforementioned. During QAT , we use per-tensor

symmetric quantization for both activations and weights

and learn the quantization scaling/bias factor via back-

propagation with the Adam optimizer. The learning rate

for YOLOv5, YOLO11, CNN-backbone Mask R-CNN and

Transformer-backbone Mask R-CNN are 1e-4, 1e-5, 1e-4

and 1e-6 respectively. Other experimental hyper-parameters

follow official implementations. We use Eq. 9 as our

loss function, with optimized hyper-parameters for {βdetect,

βKL, βfeat} being {0.04, 0.1, 1.0} for the YOLOv5 se-

ries model, { 0.01, 0.1, 1.0 } for the YOLO11 series

model, {0.04, 0.2, 0.1 } for CNN-backbone Mask R-CNN

model, and {1.0, 1.0, 1.0} for Transformer-backbone Mask

R-CNN model. After training, we report mAP/mAP50 as

our results.

C. Ablation Study

C.1. Adaptive Label Sampling Stage

We conduct ablations on the impact of the sampling stage

number for the YOLOv5-s model, results are shown in Ta-

ble 7. Overall, the two-stage sampling strategy outperforms

the one-stage strategy, which we attribute to the continuous

variation of targets causing fluctuation in the regression tar-

gets of the image, thus hindering stable convergence. It also

matches the performance of the three-stage approach. Ulti-

mately, we opt for the two-stage strategy to strike a balance

between performance and cost.

Table 7. Ablations on Adaptive Label Sampling stages number.

One stage: update images and labels simultaneously in one pro-

cess. Two stages: Sample out labels first, then synthesize images

with fixed labels. Three stages: Generate images with one random

label first, then sample out labels with fixed images, and finally

synthesize images with fixed labels

Stages Num Precision mAP mAP50

W6A6 30.6 48.8

One W5A5 25.2 41.1

W4A4 16.0 27.9

W6A6 32.1 50.1

Two W5A5 26.3 42.3

W4A4 15.8 28.1

W6A6 31.7 49.3

Three W5A5 26.1 42.5

W4A4 15.7 27.8

C.2. Calibration Set Size

After hyper-parameters are fixed, the calibration set size

S is searched for its optimal trade-off between computa-

tion cost and effectiveness with grid search by quantizing

YOLOv5-s to 4-8 bits, as displayed in Table 8. When S
reaches 2k, the performance of the quantized network ap-

proaches convergence. Further increasing the size will lead

to increased data generation time and computational costs.
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Figure 5. An overview of Adaptive Label Sampling process. We randomly initialize the label y and initialize the input image x using

Gaussian noise. For Every fixed interval, we use a pre-trained object detection model to re-detect objects in x and update the target y. In

the subsequent iterations, x is optimized toward the updated target y. We observe that, over iterations, x and y become increasingly aligned

with each other.

To avoid complex searches, the same S is used for all exper-

iments. While this may not be optimal for all networks, it is

sufficient to demonstrate the superiority of our approach.

C.3. Modules

Ablation on key modules of the QAT stage including LKD

(Kullback-Leibler Divergence), Ldetect , and Lfeat is con-

ducted. As presented in Table 9, dropping one or two of

them results in a mAP loss. The largest mAP loss (7.2%)

occurs when both LKD and Lfeat are removed, indicating

their cooperative relationship: Lfeat constrains features of

network layers, facilitating LKD to align the network’s pre-

dictions with the targets.

C.4. Full Comparison with Data-Free Methods

In this section, we present a comparison of our adaptive la-

bel sampling method with other baseline methods under the

data-free scenario across multiple precision levels. From

the results in Table 10, we observe that despite being re-

stricted from accessing specific real label information or

distribution details, our method consistently outperforms

other data-free approaches. Moreover, it achieves results

comparable to those obtained using real labels across dif-

ferent precision levels.

C.5. Comparison with YOLOv5 at Lower Precision

In Table 11, we provide additional performance results of

the YOLOv5 series models on the MS-COCO dataset at

lower precision levels. Notably, even at ultra-low 4-bit pre-

cision, our method still outperforms LSQ trained with full

data in most cases. For example, on YOLOv5-l, our ap-

proach surpasses the best baseline by 1.7%, with the gap

further increasing to 6.3% at 5-bit precision.

C.6. Comparison with Other ZSQ methods

In this section, we compare our approach with two widely-

used zero-shot quantization (ZSQ) methods, Genie [23] and

ZeroQ [3], to highlight the impact of incorporating task-

specific information. Notably, both baselines are task-

agnostic and therefore lack essential knowledge specific

to object detection. As shown in Table 12, task-specific in-

formation plays a critical role in quantization-aware train-

ing (QAT). While all methods perform comparably un-

der W4A8 post-training quantization (PTQ), our method

achieves a significant 3.3% improvement in mAP after

QAT, outperforming all task-agnostic baselines.



Table 8. A detailed analysis of calibration set size S across different bit widths using YOLOv5-s on MS-COCO validation set.

mAP

Method Real Data S W4A4 W5A5 W6A6 W7A7 W8A8

LSQ ✓ 120k (Full) 23.3 26.9 31.5 33.4 35.7

× 5k 19.1 28.0 32.6 34.9 35.7

× 4k 18.9 27.9 32.8 34.7 35.8

Ours × 3k 19.2 27.9 32.7 35.0 36.0

× 2k 19.0 27.4 32.7 34.7 35.4

× 1k 18.3 27.8 32.6 34.8 35.6

Table 9. Ablations on modules. We use 2k calibration set and

report mAP/mAP50 of 4-bit YOLOv5-s on MS-COCO validation

set.

Lfeat LKD Ldetect mAP mAP50

✓ ✓ ✓ 19.0 33.4

✓ ✓ 16.8 30.1

✓ 11.8 21.5

Table 10. Comparison with Data free Methods on MS-COCO val-

idation set across multiple precision levels. All methods utilize 2k

synthetic images for QAT on YOLOv5-s.

Prec. Method Real label Data distri. mAP mAP50

W5A5

Real Label ✓ ✓ 28.0 45.8

Gaussian noise × × - -

Tile(Out-of-distri.) × × 16.1 27.9

Tile(In-distri.) × ✓ 17.7 31.0

MultiSample(Out-of-distri.) × × 21.9 37.3

MultiSample(In-distri.) × ✓ 22.5 37.4

Ours(Adaptive Label Sampling) × × 26.1 42.3

W4A4

Real Label ✓ ✓ 19.0 33.4

Gaussian noise × × - -

Tile(Out-of-distri.) × × 5.4 11.1

Tile(In-distri.) × ✓ 6.8 13.4

MultiSample(Out-of-distri.) × × 11.9 22.3

MultiSample(In-distri.) × ✓ 13.1 23.3

Ours(Adaptive Label Sampling) × × 15.0 27.0

Table 11. Comparison with real data QATs on YOLOv5 on MS-

COCO validation set.

mAP / mAP50

Method Real Data Num Data Prec. YOLOv5-s YOLOv5-m YOLOv5-l

Pre-trained ✓ 120k(full) FP 37.4/56.8 45.4/64.1 49.0/67.3

LSQ ✓ 120k(full)

W5A5

26.9/44.9 32.9/50.6 35.2/53.0

LSQ+ ✓ 120k(full) 27.0/44.9 33.1/51.0 35.2/53.4

LSQ ✓ 2k 24.7/42.2 31.2/49.3 35.2/53.1

LSQ+ ✓ 2k 25.0/42.9 31.2/49.2 34.8/52.7

Ours × 2k 28.0/45.8 37.1/55.7 41.5/59.7

LSQ ✓ 120k(full)

W4A4

23.3/40.0 27.9/45.4 33.1/50.3

LSQ+ ✓ 120k(full) 23.3/40.2 27.7/44.6 33.3/50.9

LSQ ✓ 2k 17.2/32.2 25.5/42.3 28.9/45.7

LSQ+ ✓ 2k 17.3/32.1 26.1/42.6 28.6/45.8

Ours × 2k 19.0/33.4 29.5/47.1 35.0/52.6

Table 12. The validity of task-specific information. (Ours)

mAP/mAP50 of YOLOv11s model on the MS-COCO validation

set is reported. Experiments are conducted under the same PTQ or

QAT settings, with 512 images from different ZSQ methods.

Precision Quantizer setting Genie [23] ZeroQ [3] Ours

W8A8
PTQ 45.8/62.3 46.0/62.5 46.0/62.7

QAT 39.8/54.6 43.9/60.4 45.9/62.2

W6A6
PTQ 39.7/54.9 40.1/55.5 40.3/55.8

QAT 36.9/51.9 39.5/55.4 42.8/59.2

W4A8
PTQ 11.2/18.0 11.3/18.3 11.2/18.2

QAT 34.6/49.1 37.9/53.9 41.2/57.1

D. Sample Efficiency

We also demonstrate that by employing Adaptive Label

Sampling, we achieved comparable or even superior re-

sults on QAT using a synthetic calibration set that is only

1/60 the size of the original training dataset. Addition-

ally, by integrating self-distillation into the fine-tuning pro-

cess of the quantized object detection network, we enabled

a more efficient knowledge transfer. In the initial stage, uti-

lizing 8 RTX 4090 GPUs for image generation allow us to

produce 256 images every 20 minutes, resulting in a to-

tal of 160 minutes to generate 2,000 images. It is impor-

tant to note that the calibration set we generate captures

the overall characteristics of the original training set, allow-

ing it to be reused multiple times during the quantization-

aware training process. As the number of training iterations

increases, our method progressively enhances the training

convergence speed, achieving up to 16× faster conver-

gence compared to the LSQ method trained on the entire

real dataset. The corresponding results are visually illus-

trated in Fig. 6.

E. Additional Qualitative Results

Visualization for different object detection models In

this section, we present visualizations of images gener-

ated by all the models discussed in this paper, including

YOLOv5, YOLO11, as well as CNN and Transformer-
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Figure 6. (a) Our synthetic condensed calibration set is 1/60 the

size of the MS-COCO training set. (b) The training convergence

speed can be improved by up to 16× compared to LSQ.

backbone Mask R-CNN, as shown in Fig. 7.

As observed, despite initializing the images with Gaus-

sian noise and without referencing any real image data, our

generated images can still accurately restore the real-world

positions and sizes of objects. For instance, in the images

generated by YOLOv5, a ballet dancer can be seen grace-

fully performing. In the images produced by YOLO11,

there is a person sitting on a bench waiting for someone,

as well as a table with several pizzas on it. In the CNN-

backbone Mask R-CNN generated images, a herdsman is

riding a horse while a giraffe roams aimlessly. Meanwhile,

in the Transformer-backbone Mask R-CNN generated im-

ages, a television is displaying a program. By leveraging

task-specific image generation, we can create more realistic

images across different network architectures without rely-

ing on any external support.

Qualitative results for synthetic data In this section,

we visualize the advantage of our Adaptive Label Sam-

pling method over random sampling for multiple labels.

As shown in Fig. 8, the left side illustrates our Adaptive

Label Sampling method, which initially starts with single-

label random sampling as presented in Table 6. After

Adaptive Label Sampling, the model leverages the informa-

tion stored during pre-training and add objects it considers

highly confident, ultimately producing high-quality images.

For instance, you can observe a person riding a horse, three

boats gently floating on the shimmering water, and someone

about to sit and rest next to a couch, among other realistic

scenes.

Next, we use the obtained labels to perform multi-label

random sampling by generating the corresponding object

sizes and locations based on the sampling distribution in

Table 6. The resulting images are shown on the right side of

Fig. 8. In this scenario, the image quality deteriorates sig-

nificantly, and the visual features fail to accurately reflect

the generated objects. Consequently, compared to multi-

label sampling, our Adaptive Label Sampling method cap-

tures the model’s internal information more effectively, pro-

ducing higher-quality and more coherent images.

Qualitative results for object detection performance In

this section, we present visualizations illustrating the object

detection capabilities of various neural networks. Specif-

ically, we randomly selected four images from the MS-

COCO validation set and used the detection results of a full-

precision YOLOv5-s network as the reference. The visual

comparisons in Fig. 9 display the detection results of neural

networks trained with our adaptive label sampling method

under 4-bit quantization-aware training (QAT).

The visualizations demonstrate that our quantized net-

work can effectively detect objects. For example, when

multiple teddy bears are present in an image, it accurately

identifies each one. Similarly, when there is only a single

object, such as a bear, it correctly recognizes it with confi-

dence levels comparable to those of the full-precision net-

work.



YOLOv5

YOLO11

CNN-backbone 

Mask R-CNN

Transformer-

backbone Mask 

R-CNN

Figure 7. Visualization of images composed by different architecture-based object recognition networks.
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