
A. Scalability discussion
We compare client and server computation complexity
(Client/Server Comp.) and communication costs for upload
and download (UL/DL Comm. cost).

Method Client Comp. Server Comp. Comm. cost
FlexLoRA O(rd2) O(Kdr2 +Kd2 + d3) UL:2rd DL:2rd
FLoRA O(rd2) O(Krd2) UL:2rd DL:d2

Te-LoRA (Ours) O(rd) O(K2rd+Kr2d+K2r2d) +O(Kr2) UL:rd DL:rd

Table A. Computation complexity

Since (rank) r ≪ d, our Te-LoRA greatly reduces client
computation and communication cost. With K = 10
(clients) and d = 4096 (LoRA matrix ∈ Rd×r), it is also
efficient on the server side for small (< 100) and medium
(100−1000) scales, but loses advantage when K > d in
large-scale settings.

B. More baselines
For the heterogeneous LoRA scenario, most existing meth-
ods have been thoroughly compared in the original paper, as
this is a key issue addressed in our work. To enrich results,
we include additional baselines (Table B). Te-LoRA out-
performs FFA-LoRA, which trains only the B matrix, and
LoRA-A2, which uses score-based rank selection with al-
ternating freezing, in both homogeneous and heterogeneous
settings.

Method MMLU MT-Bench
Heter / Homo Wizard Dolly Alpaca-GPT4 Wizard

FFA-LoRA 21.11 25.83 43.62 3.13
LoRA-A2 23.52 / 22.92 27.93 / 27.91 45.50 / 45.20 3.26 / 3.21
Te-LoRA (Ours) 23.71 / 23.35 28.37 / 28.44 46.16 / 45.86 3.33 / 3.31

Table B. More baselines

C. Convergence analysis
Theoretical Assumptions
Lipschitz continuity: Assume that the model’s loss func-
tion is L-Lipschitz continuous with respect to the parame-
ters θ and is bounded, such that the change in loss due to
small perturbations of the parameters is controlled. Here, L
is the Lipschitz constant, and |θ| ≤ R, whereR is the radius
of the parameter space.
Bounded alignment and tensor errors: Assume that the
alignment error ψ (from PAA) and tensor error τ (from
T2M) are bounded within a constant range.

Convergence Theorem
Under the aforementioned assumptions, let the sample size
per client be N , the number of clients be K, and the to-
tal dimension of the LoRA parameters be P . After apply-

ing PAA+T2M aggregation, the generalization error (or ex-
pected risk difference) of the model satisfies the following:

E(θ̂) = O
(
L(ψ + τ) +

√
P ln R

(ψ+τ)

|K| N

)
(1)

Thus, with high probability, the generalization error com-
prises two components: the approximation error O(ψ + τ)
induced by alignment/tensor errors, and the statistical er-

ror term O
(√P ln ( R

ψ+τ )

|K|N
)
. This result preserves the depen-

dency structure of the generalization error concerning the
sample size, number of clients, parameter dimension, and
errors.

Key Points of Deduction
Local perturbation error: From the Lipschitz property,
we know that if the parameter vectors differ by ∆θ, then the
change in loss is at most O(L|∆θ|). Therefore, when the
alignment error and tensor error are combined into |∆θ| =
O(ψ + τ), the resulting model error is O(L(ψ + τ)).
Coverage and statistical error: Assume that the parameter
space can be regarded as a k-dimensional sphere with radius
R and ε-net coverage number |N | = O

(
R
ε

)P
. Combining

Hoeffding’s concentration inequality, parallel estimation for

all θ yields a generalisation error term of O
(√P ln (Rε )

|K|N
)
.

Sample Complexity
Let the generalization error target be ϵ (ignoring the align-

ment error term), which must satisfy

√
P ln ( R

ψ+τ )

|K|N ≈ O(ϵ).

The sample size required for a single client is N =

O
(

P
|K|ϵ2 ln

R
ψ+τ

)
.


