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A. Tabular Catalog of the Supplementary
In this supplementary material, we primarily provide exten-
sive qualitative results to demonstrate the effectiveness and
wide applicability of TAM. These sections include compar-
isons with state-of-the-art (SoTA) methods, visualizations
about ablation study, attribute explanation, failure case anal-
ysis, VQA examples, video visualizations, MLLM compar-
isons, reasoning analysis, multi-turn conversation, multi-
image input, as well as some quantitative results and base-
line descriptions. To enhance readability given the exten-
sive content, we provide a tabular catalog in Table 5 for
quick reference.

B. Examples of Multimodal Activation Map
In this section, we present a high-resolution example ac-
companied by detailed captions to facilitate the explanation
of the multimodal activation map defined in Eq. 3. The pri-
mary element is the activation map at the top, which reflects
the degree of vision-text alignment and serves to visually
explain the MLLM. All multimodal activation maps in this
paper adhere to a consistent format, and we provide high-
quality images; please zoom in if any example appears too
small to read.

The visual activations and textual relevances are normal-
ized to the same scale as specified in Eq. 3, allowing for
a direct comparison between the two modalities to identify
where the model focuses—whether on the image or the con-
text. The text is colored by tokens, with some words repre-
sented by multiple tokens marked in different colors. The
answers following the target are not visible for the current
explained token, and are therefore colored in gray. The col-
ors of the candidate responses reflect the prediction con-
fidence of the top three tokens corresponding to the tar-
get, which can be useful for analyzing failure cases through
potential predictions and confidence levels associated with
each token.

C. TAM to Explain All Generated Tokens
The proposed TAM demonstrates a significant advantage in
explaining multiple generated tokens from MLLMs, in con-
trast to conventional models that typically focus on a sin-
gle output. We depict all multimodal activation maps in
Fig. 10 and support it. The figure clearly shows that TAM
produces considerably fewer redundant activations, particu-
larly for non-object words, thanks to the proposed estimated
causal inference.

For instance, the activations for the function word “with”
and the punctuation mark “.” in the Class Activation Map
(CAM) are extremely high, overshadowing object activa-
tions. Additionally, these visual activations often exceed
those of text tokens, resulting in excessive redundant acti-
vations. In comparison, our TAM is much clearer and fo-
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Figure 9. A high-resolution example of the multimodal activation
map. This image is processed by the Qwen2-VL-2B model [51].
There are five components to visualize, including the visual
activation map, prompt tokens, textual relevance, the explained
target token, next answer tokens, and its top predictions (top 3).
The colors indicate the corresponding response degree.

cuses more on important objects. These results suggest that
TAM produces closer explanations to the understanding of
humans than CAM, where words from the image are high-
lighted while those related to texts show much fewer re-
sponses. Besides, there are much fewer activations showing
higher visualization quality as well.

D. Implementation of Baselines

We conduct experiments on various MLLMs, including
Qwen2-VL-2B [51], Qwen2-VL-7B, LLaVA1 5-7B [35],
LLaVA1 5-13B, InternVL2 5-2B [15], InternVL2 5-4B,
and InternVL2 5-8B implemented by transformers using
weights from huggingface. For Qwen2-VL all the models
the weights are the Instruct version (e.g., Qwen2-VL-2B
from huggingface “Qwen/Qwen2-VL-2B-Instruct”). The
example of LLaVA1 5 weights is from “llava-hf/llava-1.5-
7b-hf” and “thisisiron/InternVL2 5-2B” for InterVL2 5.
Due to device limitations, very large MLLMs are not used.
For image resolution, Qwen2-VL supports raw image size,
while LLaVA1 5 and InternVL2 5 fix image sides at 336
and 448, respectively. For the implementation of video
caption on Qwen2-VL [51], we extract 10 frames from a
short video and repeat frames for the number of tempo-
ral patch size to ensure each frame has its own activation,
instead of activations from other frames. We use the same
prompts for the involved MLLMs. These prompts are set
according to the average length of captions. For COCO
Caption [13] the prompt is “Write a one-sentence caption
for this image:”, and the prompts for GranDf [42] and
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Figure 10. Visualization of one example for all generated tokens on the Qwen2-VL-2B [51] model. The proposed TAM shows more
accurate object localization ability beyond conventional CAM, with much fewer redundant activations in an overall view.

OpenPSG [57] are “Write a description for this image using
around two sentences:”, “Write a description for this image
using around three sentences:”, respectively. For attribute
analysis, the prompt is set like “What is the [attribute] in
this picture?”. In addition, we use the prompts provided
from the QK-VQA [37] and STAR [52] datasets, which vary
according to the images.

For the explanation baselines [2, 9, 26, 32, 45], we im-
plement them referring to their official codebases. To obtain
attention weights for attention-based explainability methods

(such as attention weights and Rollout [1]), we rewrite the
SdpaAttention in PyTorch. This is necessary because the
original implementations of SdpaAttention and FlashAtten-
tion do not provide attention weights. For the CP-LRP [5]
and AttnLRP [2], modules of MLLM are replaced by the
official implementations of AttnLRP to back-propagate the
relevance from output to visual tokens. Besides, these meth-
ods need to close the kv cache to maintain gradients for key
and value. Note, the Grad-CAM [45] is equivalent to CAM.
Because the weights for the activation map are derived from



the classifier weight in MLLMs. Since there is only a fea-
ture vector without the pooling and other structures. The
gradient is fully dependent on the classifier weight at the
same ratio among channels. Since they are the same, we
apply the classifier weight of CAM to achive TAM to avoid
extra back-propagation in Grad-CAM. Other implementa-
tion methods of estimated causal inference include the mean
of context maps (mean), using the attention weights as rel-
evance in Eq. 4 (AttnWeights).

E. Details of Metrics.
The metrics are based on the part of speech using the
pos tag function from the NLTK Python package. The spe-
cific tags are “NN”, “NNS”, “NNP”, and “NNPS” for Obj-
IoU. Function words are identified by the tags: “CC”, “DT”,
“EX”, “MD”, “POS”, “PRP”, “PRP$”, “UH”, “WDT”,
“WP”, “WP$”, and “WRB”. Notably, we exclude the tags
“IN” and “CD” from function words, as they pertain to lo-
cation and quantity.

Besides the IoU based metric, in Sec. 3.4, we have
discussed the difference between the used plausibility test
(how accurately it reflects the true reasoning process), com-
pared with another widely used faithfulness (how accurately
it reflects the true reasoning process). While the faithful-
ness is not suitable for MLLM evaluation. Because the
perturbation tests [2, 11] of the faithfulness metric alter the
generated texts every time, resulting in inconsistent gener-
ated texts that are not stable to evaluate raw generated texts
of MLLM. Specifically, masking different input regions in
the faithfulness test drastically changes MLLM output to-
kens, invalidating observations of ”decision-making” tied to
a fixed class. In conventional models, input changes affect a
fixed class’s confidence, but in MLLMs, it causes vanished
tokens or shifted context, making confidence comparisons
invalid. Besides, its cost is unacceptable, which needs N
times repeated inferences (N = token number × regions ra-
tios).

Another consideration regarding the metrics is the vari-
ation in response levels. Specifically, our ECI involves a
subtraction operation between activation maps, which can
lead to a lower overall intensity compared to the original re-
sponses. We did not overlook this limitation when design
the metrics; instead, we implemented a straightforward op-
eration to penalize excessive discrepancies. Specifically, we
use the response map of the first prompt token in place of the
first generated token in evaluation. Since the first prompt to-
ken does not have any earlier text tokens, the map does not
incorporate the ECI and reflects the original response level.
If the response level of the altered map significantly dif-
fers from the processed maps, it can result in inappropriate
background thresholds, thereby diminishing the Func-IoU
metric. For instance, if the background threshold processed
after ECI is 0.1, it may be too low for this map, leading to

false positives and consequently affecting the metrics. De-
tailed operations can be referenced in our open-source code.

F. Analysis About Motivation
In Fig. 1(c), we randomly pair CAMs and count their L1
distance against text correlation. Higher text correlation
corresponds to lower distance, indicating concurrent inter-
ferences. In this section, we provide a statistical test to sup-
port it. Specifically, the added statistical test is the Pearson
correlation at -0.16 with p-value of 1.5E-30. Since most
pairs are not related in the random pairing, the correlation
is not strong. When pairing the most related tokens, the
Pearson correlation comes to -0.359 (p-value 7.9E-32). It
confirms that the negative correlation is evident.

We also conducted a causal validation for the causal in-
ference. In this paper, our ECI is based on the potential
outcome model (POM). The used causal validation for this
model is the Placebo test. Specifically, we validate it by
replacing the target CAM to a random earlier CAM as the
placebo (not the observed target), and then record the results
drop. The Obj-IoU reduced to 6.2% on COCO Caption and
4.4 times lower than the raw result, suggesting the causal
effect is significant.

G. Extensive Cases about Method Comparison
In addition to the visual comparison presented in Fig. 2,
we offer more complex examples in Fig. 12 and Fig. 13
within this section. The findings are consistent with those
discussed in Sec. 4.3: the proposed TAM significantly out-
performs existing explainability methods.

Specifically, TAM generates fewer redundant activations
and exhibits less noise compared to gradient-based methods
[9, 45]. Moreover, it effectively locates objects, contrasting
with the scattered activations seen in attention-based meth-
ods (e.g., Attention, Attention-Rollout [1], CP-LRP [5], At-
tnLRP [2]). These results indicate that TAM enhances the
localization capabilities of MLLMs, even in complex sce-
narios. Consequently, TAM can be integrated into existing
MLLMs without requiring grounding abilities, thereby fa-
cilitating a wide range of potential downstream tasks with-
out additional supervision or alignment.

H. Visual Comparison About Causal Inference
We have validated the effectiveness of the proposed Esti-
mated Causal Inference (ECI) in Table 2. In this section, we
present visualization results that illustrate how our ECI out-
performs existing methods and alternative implementations,
as shown in Fig. 14. The first baseline we consider is fea-
ture surgery [32], which is designed to mitigate redundant
features along the class dimension. However, the challenge
with multi-language models (MLLMs) lies in the correlated
activations along the token prediction dimension, which is



fundamentally different. As a result, feature surgery per-
forms significantly worse than our ECI. Given the limited
methods addressing correlated activations, we introduce ad-
ditional baselines derived from other implementations of
ECI: ECI-mean and ECI-attnWeights, as details in Supp.
D. Although these suboptimal implementations outperform
feature surgery, they still yield inferior results compared
to the final ECI. Notably, our ECI demonstrates superior
performance in handling function words, producing signif-
icantly fewer redundant activations while achieving better
recall of target objects. These results indicate that our ECI
is well-designed and effective for mitigating correlated ac-
tivations among the generated tokens of MLLMs.

I. Visual Comparison Among Denoise Filters

Image denoising remains a traditional research topic, but
it is the first time to be introduced in the visual explanation
field. The issue of noise has been addressed in Sec. 2, where
various methods aimed at noise reduction in transformers
are discussed. However, residual noise persists even after
these methods are applied. Consequently, it is essential to
introduce denoising filters as a straightforward yet effec-
tive solution. Unlike conventional models that produce very
small output sizes (e.g., 7 × 7), the output size of MLLMs
is comparatively larger (e.g., 36 × 36). As a result, scatter-
shaped noise is more likely to occur in MLLMs.

These noises belong to the salt-and-pepper noises in gen-
eral, which can be effectively addressed using median and
Gaussian filters. While these methods do not represent the
optimal solution, as illustrated in Fig. 15. Specifically,
the Gaussian filter proves inadequate in mitigating clustered
noise, leaving many noises visible in the yellow boxes. The
median filter reduces noise effectively, yet it still leaves
behind unsolved scatter noise, with additional missing re-
gions indicated by blue boxes in the final row. Similarly,
the adaptive median filter [8] exhibits significant scatter
noise, particularly near image edges where noise concentra-
tion is higher. In contrast, our proposed rank Gaussian fil-
ter demonstrates superior performance by amalgamating the
strengths of both Gaussian and median filters, along with
the novel technical enhancements discussed in Sec. 2.

J. Visualization of Ablation Study

We conducted ablation studies in Table 1. In addition to
the quantitative results, we present further visualizations in
Fig. 16 to elucidate the effectiveness of these modules. The
first column showcases the baseline method, CAM [56] /
Grad-CAM [45], which displays numerous redundant acti-
vations accompanied by noise, highlighted in white boxes.
The proposed estimated causal inference (ECI) method in
the second column effectively mitigates most correlated ac-
tivations, although some persistent noise remains. The rank

Gaussian filter in the third column successfully removes this
noise, but redundant activations are still evident. By inte-
grating these two innovative techniques into the proposed
TAM, we achieve substantial explanatory results that lever-
age the strengths of both approaches. These examples il-
lustrate the mutual benefits of the modules, leading to an
overall improvement that exceeds the sum of their individ-
ual contributions, as shown in Table 1.

K. Explainability Results on Diverse MLLMs
In addition to the explainability improvements highlighted
in Table 4, we present specific results in Table 6. This ta-
ble reveals that the overall F1-IoU of the TAM ranges from
30.68% to 41.45% across three datasets and seven MLLMs.
In contrast, the baseline CAM [56], which is considered a
SoTA method in terms of performance and practicality (as
shown in Table 3), achieves F1-IoU results ranging from
23.63% to 34.39%. These results clearly indicate that TAM
demonstrates broader applicability and enhanced explain-
ability across diverse MLLMs.

Moreover, TAM offers a unique perspective on evalu-
ating MLLMs from an explainability standpoint, beyond
existing metrics. For instance, LLaVA models [35] and
Qwen2-VL models [51] exhibit higher F1-IoU scores than
InternVL models [16] on the COCO Caption [13] and
OpenPSG [57] datasets, while InternVL models excel on
the GranDf dataset [42].

We also observe scalability in explainability across cer-
tain model sizes, as shown in Fig. 11a-c. For example,
LLaVA models show improvements from 7B to 13B, In-
ternVL models from 2B to 4B, and Qwen2-VL models from
2B to 7B. This trend suggests a positive correlation between
the scalability and explainability of MLLMs to a certain ex-
tent. When the model size are larger, the model tends to
encode objects with fewer tokens, leading to a decrease in
recall (see Fig. 11d) and an increase in precision. Sub-
sequently, the Obj-IoU decreases due to a more significant
decrease in recall.

L. TAM for MLLM Visual Comparison
Generally, researchers MLLMs using quantitative metrics
or textual outputs, while visual comparisons remain un-
derexplored. In contrast, visual evaluations are prevalent
in conventional models such as Convolutional Neural Net-
works (CNNs) and Vision Transformers (ViTs), which ef-
fectively illustrate the enhanced representational capabili-
ties of new models. The absence of a dedicated explanation
tool for MLLMs may contribute to this gap. The proposed
TAM addresses this limitation, enabling researchers to con-
duct visual comparisons of their MLLMs against existing
models, beyond the conventional textual comparison.

We present visual comparisons among MLLMs in Fig.



Method MLLM COCO Caption GranDf OpenPSG
Obj-IoU Func-IoU F1-IoU Obj-IoU Func-IoU F1-IoU Obj-IoU Func-IoU F1-IoU

CAM LLaVA1 5-7B [35] 23.17 43.16 30.16 20.07 47.48 28.21 25.11 51.55 33.77
TAM 27.65 61.43 38.13 20.71 59.15 30.68 28.57 61.06 38.93
CAM LLaVA1 5-13B [35] 24.82 51.18 33.43 21.34 43.99 28.74 26.65 48.45 34.39
TAM 29.12 58.5 38.88 22.1 51.02 30.84 30.88 59.96 40.76
CAM InternVL2 5-2B [16] 15.94 45.62 23.63 18.28 37.64 24.61 19.76 46.42 27.72
TAM 21.38 65.1 32.19 20.48 85.93 33.08 23.0 86.86 36.36
CAM InternVL2 5-4B [16] 18.23 40.95 25.23 20.91 44.52 28.46 21.28 34.7 26.38
TAM 21.76 63.12 32.36 22.53 89.71 36.02 23.49 89.75 37.23
CAM InternVL2 5-8B [16] 14.59 64.41 23.8 18.04 57.42 27.45 18.46 62.21 28.47
TAM 19.98 66.53 30.73 21.56 85.95 34.47 21.73 88.74 34.91
CAM Qwen2-VL-2B [51] 21.23 51.93 30.14 17.85 62.15 27.74 22.93 48.5 31.15
TAM 27.37 68.44 39.1 18.65 88.97 30.83 26.26 92.99 40.95
CAM Qwen2-VL-7B [51] 22.51 42.44 29.42 18.6 68.03 29.21 23.41 42.94 30.3
TAM 28.13 71.85 40.43 19.88 90.57 32.61 26.94 89.88 41.45

Table 6. TAM shows wide applicability on diverse MLLMs and datasets beyond the CAM [56] for all the experiments on the major
F1-IoU (%) metric at large margins. TAM can be used as a visual comparison approach, where Qwen2-VL models [51] show better visual
explainability than LLaVA1 6 [35] and InternVL2 5 [16] on the COCO Caption [13] and OpenPSG [57] datasets.

(a) (b)

(c) (d)

Figure 11. Relation between model size and explainability. (a-c)
F1-IoU (%) results on LLaVA1 5 [35] (7B, 13B), InternVL2 5
[16] (2B, 4B), and Qwen2-VL [51] (2B, 7B) across diverse
datasets [13, 42, 57] indicates the explainability is increased with
more model parameters within a certain range. (d) Increasing the
parameters of InternVL2 5 [16] on the OpenPSG dataset [57]
improves object precision; however, this comes at the cost of
decreased recall, which may negatively impact the F1-IoU score
when the recall is too low.

17, focusing on attributes, and Fig. 18, which highlights
object recognition. One key finding is that Qwen2-VL-7B
[51] surpasses LLaVA1 5-7B [35] in text attributes, as il-
lustrated in Fig. 17. Furthermore, it demonstrates superior
performance in the object cases compared with LLaVA. For
instance, Qwen2-VL-7B exhibits stronger activations in the
top two rows of Fig. 18 and lacks correlation with the sand-
wich when interpreting the pizza in the third row.

In contrast, InternVL2 5-8B [16] tends to overemphasize
textual information, resulting in weaker visual responses.

Although it generates highly detailed textual content that
exceeds the length of LLaVA’s outputs, its activation map
displays comparatively lower intensity. This is evidenced
by the pronounced responses in textual areas (illustrated by
the increased red regions). Despite reasonable activations
in several successful cases (indicated by the light blue re-
gions), InternVL2 5-8B exhibits lower quantitative perfor-
mance, as shown in Table 6.

These visual findings underscore that TAM offers a novel
perspective for comparing MLLMs, providing deeper in-
sights, particularly when quantitative results are closely
matched across certain datasets. Researchers can lever-
age visual comparisons to highlight the advantages of their
models.

M. Extensive Cases about Attributes Analysis

The proposed TAM enables users to analyze the fine-
grained attributes of MLLMs. These attributes contribute
to a deeper understanding of how the model works. We
present various visualizations of attributes, including ac-
tions and colors in Fig. 20, text and shapes in Fig. 21,
and locations for both images and videos in Fig. 22.

The results indicate that the tested model, Qwen2-VL-
7B [51], possesses the capability to comprehend diverse at-
tributes with a high degree of explainability. Furthermore,
we compare existing methods [45, 56] with our proposed
TAM in Fig. 23, where our method demonstrates signifi-
cantly superior explanation quality. These activation maps
provide visual evidence for the generated content, thereby
enhancing the model’s credibility.

N. TAM for Biased Scenario

The Task-Aware Mask (TAM) framework is capable of sup-
porting the analysis of biased scenarios. In Fig. 19, we



investigate whether the background environment unexpect-
edly influences the classification of target categories. The
output text indicates that images of terrestrial birds with
synthetic aquatic backgrounds were misclassified as wa-
terbirds, suggesting a significant bias introduced by back-
ground features in the model’s predictions. We conducted
an in-depth analysis of this phenomenon using the TAM.

TAM effectively separates the contributions of different
regions within the image to the classification decision, al-
lowing for precise localization of the source of bias. Our
research reveals that the synthetic aquatic background ex-
erts a substantial influence on the model’s internal repre-
sentations, leading it to favor categorizing images as water-
birds. This finding underscores the importance of consider-
ing background information during the model training and
evaluation processes. Over-reliance on background features
rather than the characteristics of the target itself may result
in systematic misjudgments in scenarios that include syn-
thetic or artificially manipulated backgrounds. The TAM-
based analysis provides an effective diagnostic tool for iden-
tifying issues like background bias.

Figure 19. TAM supports analyzing biased scenarios. The
landbirds in these two images were mistakenly classified as
waterbirds due to the synthesized water backgrounds. The TAM
identified that this biased recognition arises from the influence of
the background.

O. Extensive Failure Cases Study

An important function of TAM is to support developers in
analyzing failure cases, thereby deepening their understand-
ing of the model’s shortcomings and enabling the develop-
ment of better MLLMs. Generally, developers analyze er-
rors by comparing the reply and answer, while TAM pro-
vides a clear visual view to understand them with more in-
sights. As shown in Fig. 24, we list several failure cases
with the error reason and corresponding analysis. We find
that sometimes the model can successfully locate the target
object, but lacks additional knowledge related to it thus re-
plying falsely or refusing to answer (e.g., the train and cat in
the left of Fig. 24). If the model focus on other regions out

of the target, the answer is possibly to be wrong. For exam-
ple, we the model looks at the wall, it replies “living wall”,
instead of the specific plant type the user asked for. An-
other error type is tolerable, that is synonyms, hypernyms,
or hyponyms of answers (e.g., UK vs. England, fabric vs.
nylon).

We further conduct case analysis on videos using
Qwen2-VL-2B [51] in Fig. 25. Some error types are inter-
esting. In the first row, we find the model already knows the
object is a laptop when generating the token “pink”. But
it turns to the case sequentially. It indicates the answer is
shifted by context (maybe trained with some corpus includ-
ing “pink case”). Besides, the representation is not strong
enough, and the model cannot divide the pattern of the pil-
low and doll in the third row. In the fifth row, the picture
with a border is similar to a book, while it is attached to
the wall. From this context, we can know this is a picture
instead of a book, indicating the weak capacity to integrate
context. For the last row, the attention is located on the hair,
suggesting the model predicts the “washing” according to
the hair, instead of the window. All these examples prove
that TAM can provide more cues and insights to analyze
failure cases.

P. Extensive Success VQA Examples

In addition to the failure cases illustrated in Fig. 24,
we present extensive success Visual Question Answering
(VQA) examples in Fig. 26. These visualization results in-
dicate that the Token Activation Model (TAM) is applicable
not only to caption-based datasets but also to VQA datasets,
such as QK-VQA [37]. From the figure, we observe that
certain images are well-aligned with the generated tokens,
which include objects, actions, texts, and patterns (e.g.,
the Qantas logo), thereby facilitating accurate predictions.
However, some cases are not primarily object-determined;
they rely heavily on textual cues, as seen with terms like
”commercial” and ”cross” in the last row. This analysis al-
lows us to discern the sources of predictions based on acti-
vation levels: higher responses indicate strong visual rele-
vance, while lower responses suggest a greater reliance on
textual information.

Q. Examples about Video Visualization

Video modality is a crucial input type for MLLMs; how-
ever, it has seldom been studied in the explainability aspect.
We compare our TAM with conventional methods [45, 56],
as illustrated in Fig. 27, using Qwen2-VL-2B [51] on the
STAR dataset [52] for video understanding. It is evident
that TAM produces significantly clearer video visualization
results compared to CAM [56] and Grad-CAM [45], both
of which are well-established methods, as shown in Table
3. Specifically, TAM effectively reduces redundant activa-



tions and minimizes noise, allowing users to concentrate on
target objects and observe the raw video more clearly. Ad-
ditionally, we provide case studies in Fig. 25 for video error
analysis.

R. Corner Case About Reasoning
TAM serves as a valuable tool for analyzing the visual rea-
soning processes of MLLM. In Fig. 28, we present a corner
case of visual reasoning and analyze it using TAM. We find
that both Qwen2-VL-7B [51] and InternVL2 5-8B [16] pro-
vided incorrect answers in this case. TAM reveals that the
primary issue arises from incomplete recognition of all ar-
rows in the problem, with missing arrows leading to subse-
quent reasoning errors. Furthermore, the reasoning capabil-
ity of Qwen2-VL-7B is weaker than that of InternVL2 5-
8B in this instance, as evidenced by inconsistent context
understanding and very low text activations. In contrast,
while InternVL2 5-8B exhibited stronger textual responses
and correct logical reasoning, it compromised visual per-
ception and interpretability, ultimately resulting in an incor-
rect answer as well. These analyses offer valuable insights
for future model optimization and highlight the broad appli-
cability of TAM.

S. TAM for Multi-image Conversation
Conventional models generally have a single input and a
single output, whereas the characteristic of MLLM is that
it supports multiple inputs and multiple token outputs. We
provide examples of multi-image conversation in this chap-
ter, as shown in Fig. 29. In the first example, Qwen2-VL-
2B [51] can identify the main elements from four differ-
ent images, accompanied by high-quality explanation re-
sults provided by TAM. In the second example, TAM ex-
plains from a visual perspective why Qwen2-VL-2B con-
siders the fourth image the most interesting. TAM presents
detailed activation maps, explaining specific focus points on
attributes such as object (pug), artwork (The Scream), im-
age style (cartoon), and painting style (anthropomorphic).
These results demonstrate the broad applicability of TAM,
which can support various new capabilities of MLLMs.

T. TAM for Multi-turn Conversation
TAM supports multi-turn conversation for MLLM, which
is a new capability compared to conventional models. We
first present a qualitative example in Fig. 30. Qwen2-
VL-2B [51] can effectively generate the image description,
and TAM provides accurate response maps for various at-
tributes, such as objects, actions, and text. Subsequently,
the user engaged in multi-turn conversation, inquiring about
a fatter dog and the color of a chair. TAM effectively in-
terpreted these fine-grained tokens, including positional in-
formation, adjectives, and colors. This example demon-

strates TAM’s broad applicability and offers strong inter-
pretability analysis for new features like multi-turn dialogue
in MLLM.

Additionally, we provide an analysis of a faulty exam-
ple in Fig. 31, showing that TAM helps locate model er-
rors and provides visual insight for developers. Although
Qwen2-VL-2B can recognize why this image is distinc-
tive and demonstrates strong interpretability for object to-
kens, it made errors in understanding speed and motion blur.
Specifically, the taxi exhibited motion blur indicating higher
speed, but it incorrectly identified it as an SUV. In the sec-
ond round of dialogue, we speculated that it might not have
recognized the blur, or it could have recognized the blur but
failed to understand the relation between blur and speed.
Thus, in the third round of dialogue, we asked which vehi-
cle exhibited blur, and the clues provided by TAM indicated
that the failure to recognize motion blur was the main reason
for this faulty example. TAM supports multi-turn conversa-
tion, allowing for more detailed analysis of errors and offer-
ing developers precise reasons and a deeper understanding
for issues.
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Figure 12. Visual comparison between our TAM and SoTA methods on the COCO Caption dataset [13] using the Qwen2-VL-2B [51]
model. Objects without ground-truth are marked by red boxes. TAM performs best beyond previous SoTA methods. ”CAM /
Grad-CAM” indicates CAM [56] and Grad-CAM [45] are equivalent for MLLM as discussed in Supp. D.
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Figure 13. Visual comparison between our TAM and SoTA methods on the COCO Caption dataset [13] using the Qwen2-VL-2B [51]
model. Objects without ground-truth are marked by red boxes. “func.” indicates function words assigned as the background class. TAM
performs best beyond previous SoTA methods.



Feature surgery ECI-mean ECI-attnWeights ECI (final)

coffee

and (background)

cake

cat

the (background)

Ground-truth

Figure 14. The proposed estimated causal inference is well-designed beyond other methods and implementations. The yellow boxes
indicate correlated activations, and the blue boxes mean missed activations. Feature surgery [32] is designed for CLIP [41] to mitigate
redundant features along the class dimension, while ECI-mean and ECI-attnWeights are other implementations of our estimated causal
inference. The used model is Qwen2-VL-2B [51] on the COCO Caption dataset [13].



Gaussian filter Median filter Adaptive median filter Rank Gaussian filter (ours)

Figure 15. The proposed rank Gaussian filter is more effective than existing methods. The yellow boxes indicate insufficient
denoising, and the blue boxes mean over-denosing. The used model is Qwen2-VL-2B [51] on the COCO Caption dataset [13].



baseline ECI only RGF only ECI + RGF (TAM)

Figure 16. TAM involves two mutually beneficial modules. (ECI only) The estimated causal inference can mitigate most of the
interference activations, while some stubborn noise remains. (RGF only) The rank Gaussian filter can remove these noises, while
redundant activations are obvious. (ECI + RGF) TAM integrates the advantages of both and achieves good explanation results far beyond
the baseline [45, 56]. The white boxes indicate correlated activations solved by our method. The used model is Qwen2-VL-2B [51] on the
COCO Caption dataset [13].



Qwen2-VL-7B LLaVA1_5-7B InternVL2_5-8B Qwen2-VL-7B LLaVA1_5-7B InternVL2_5-8B

Figure 17. TAM supports visual comparison among MLLMs about attributes. Qwen2-VL-7B [51] presents good visual explainability
beyond LLaVA1 5-7B [35] on texts. InternVL2 5-8B [16] focuses on textual content with more red texts and weaker visual activations.



Qwen2-VL-7B LLaVA1_5-7B InternVL2_5-8B Qwen2-VL-7B LLaVA1_5-7B InternVL2_5-8B

Figure 18. TAM supports visual comparison among MLLMs about objects on the COCO Caption [13] dataset. Qwen2-VL-7B [51]
presents the best visual results with less correlation (e.g., pizza vs. sandwich in the third row) and shows a stronger activation degree.



TAM to explain actions

TAM to explain colors

Figure 20. TAM supports explaining attributes of MLLMs at high-quality for the Qwen2-VL-7B [51] about action and colors.



TAM to explain text

TAM to explain shape

Figure 21. TAM supports explaining attributes of MLLMs at high-quality for the Qwen2-VL-7B [51] about text and shape.



TAM to explain location in image

TAM to explain location in video

Figure 22. TAM supports explaining attributes of MLLMs at high-quality for both images and videos. The images are processed by
the Qwen2-VL-7B [51] from the COCO Caption dataset [13] and we use the Qwen2-VL-2B for videos from the STAR dataset [52].



C
AM

 / G
rad-C

AM
TAM

 (ours)
TAM

 (ours)
C

AM
 / G

rad-C
AM

Figure 23. TAM exceeds existing methods on attribute explanation. The images are processed by the Qwen2-VL-7B [51] from the
COCO Caption dataset [13] compared with the baseline. ”CAM / Grad-CAM” indicates CAM [56] and Grad-CAM [45] are equivalent
for MLLM, as discussed in Supp. D.



Reson: lack of additional knowledge

Details: the train is located, but lack of additional 

knowledge about its speed.

Reson: additional knowledge / question understanding

Details: the train is recognized, but the question is 

other vechicle. Missed question understanding and 

lack of additional knowledge are both possible.

Reson: weak vision-text alignment 

Details: the plant is not well aligned with the specific 

plant type. Besides, it focuses on the wall according to 

the activation, thus reply the “living wall”.

Reson:synonyms of answers

Details: even though the fabric is well located for the 

right one, but the answer is not specific enough.

Reson: lack of additional knowledge

Details: the cat is located, but lack of additional 

knowledge about famous person with it.

Reson:synonyms of answers

Details: the answer is right, but the answer england is 

not exactly the same to the United Kingdom.

Figure 24. TAM supports failure case analysis for deeper understanding with error reason and analysis details using Qwen2-VL-2B
[51] on the QK-VQA dataset [37].



Type: answer shift by context

Details: the second prediction of token “pink” is 

the right answer. But after generating this context, 

the final answer is shifted to case from laptop.

Type: incomplete answers
Details: the given answer is paper / notebook. But 

in the last frame, the women take a bottle of water, 

which is also right.

Type: weak representations
Details: the model locates the right object, but 

recognize the pillow as a doll, owing to weak 

representations that cannot divide them.

Type: hypernym of the answer
Details: the word food is hypernym of sandiwich. 

This answer is not wrong, but not specific.

Type: weak representations and context
Details: the picture / photo is similar to the book 
in apperance. But the book is not supposed to be 
attached on the wall. Here the context is not well 
considered.

Type: hypernym of the answer
Details: the word object is hypernym of box. This 

answer is not wrong, but not specific.

Type: weak action understanding
Details: the word “washing” is related to the hair 

accroding to the activations, indicating the missed 

wiping action.

Figure 25. TAM supports failure case analysis for videos with error reason and analysis details using Qwen2-VL-2B [51] on the STAR
dataset [52].



Object-determined success cases with strong activations

Textual-determined success cases with weaker activations

Figure 26. TAM presents good visual explanation result for the VQA dataset with extensive successful examples on the QK-VQA
dataset [37] using Qwen2-VL-2B [51]. These cases are dependent on different information, divided into “Object-determined” type and
“Textual-determined” type, with higher and lower activation degrees, respectively.



CAM / Grad-CAM TAM (ours)

Figure 27. Comparison about video visualization between our TAM and CAM [56] / Grad-CAM [45] (equivalent to MLLM) on the STAR
dataset [52] using Qwen2-VL-2B [51]. TAM presents much clearer visualization results with fewer redundant activations and
noises.



Qwen2-VL-7B

InternVL2_5-8B

correct activations missing the second arrow;
read the third arrow instead

down arrow is the fifth arrary;
not the third

question mark is the seventh 
symbol, three arrow are missing

weak context response, the 
answer “1” is not consistent to 

the context “upward arrow”

weak visual responses missing the second arrow;
read the third arrow instead

down arrow is the fifth arrary;
not the third

wrong perception with very 
weak activation map

strong context reasoning (Up -> 
Right -> Down -> Left -> Up),

but the visual perception is weak

Figure 28. Visual reasoning corner case analyzed using TAM. The analysis reveals that both Qwen2-VL-7B [51] and InternVL2 5-8B
[16] incorrectly answered the question due to incomplete recognition of all the arrows. Missing arrows led to erroneous reasoning.
Qwen2-VL-7B demonstrated weaker reasoning capabilities compared to InternVL2 5-8B, exhibiting inconsistent context understanding
and low text activations. In contrast, while InternVL2 5-8B provided a stronger text response with correct reasoning logic, its visual
perception and activation degree are weaker.



Identify the similarities between these images.

Which picture is the most interesting one and why?

Figure 29. TAM supports multi-image conversation of MLLM showing wide applicability. It generates high-quality activation maps
for four input images in the first case using the Qwen2-VL-2B [51]. In the second case, TAM explains why the model regards the last
image as the most interesting one, providing visual cues for key tokens. These results showcase the model’s effectiveness in multi-image
scenarios, highlighting its versatility in handling complex visual data.



Describe this image. 

The image shows two pugs sitting in 
colorful, round chairs. The chairs are designed 
with a playful and whimsical pattern, featuring the 
word "Peppa" on the fabric. The pugs are sitting 
on a wooden floor, and the background includes 
various household items such as a microwave, a 
food storage container, and a shelf with various 
containers and boxes. The overall setting 
appears to be a kitchen or a similar living space.

Multi-turn Conversation Token Activation Maps

Which pug is fatter?

The pug on the left is fatter.

What color is the chair that this fatter 
dog is sitting on?

The chair that the fatter dog is sitting on 
is blue.

pugs setting

Peppa containers

left fatter

chair blue

Figure 30. TAM supports multi-turn conversation of MLLM for diverse attributes. TAM presents high-quality visual explanation
results on Qwen2-VL-2B [51] regarding attributes such as objects, actions, and text in the first round. Then, the user inquires about the
fatter dog and the color of a chair in the second and third rounds, respectively. Activation maps suggest TAM is capable of explaining
fine-grained tokens like positional information, adjectives, and colors in multi-turn conversation.



What is unusual about this image?

The unusual aspect of this image is that a 
man is ironing clothes on the back of a yellow 
SUV while a yellow taxi cab is driving past 
him. This is not a typical scene in a city 
setting, as ironing is typically done indoors or 
in a garage.

Multi-turn Conversation Token Activation Maps

Which car is moving faster according to 
this image and why?

The SUV is moving faster than the taxi cab. 
This is because the SUV is in motion on the 
street, while the taxi cab is stationary, either 

stopped or moving slowly.

Which car has motion blur?

The SUV has motion blur. This is because 
the SUV is in motion on the street, and the 

camera's focus is not able to keep up with its 
speed, resulting in a blurred image.

pugs setting

Peppa containers

left fatter

yellow SUV

taxi ironing

Right answer: 

Taxi is faster, because it appears blurry during the 

shooting due to his rapid movement

What read from TAM:

The motion isn't focused on the blurry taxi, suggesting 

it may be a hallucination.

Incorrect answers

motion

Incorrect answers

Right answer: 

Taxi has motion blur

What read from TAM:

The error arises from a weak awareness of 

blurriness rather than a lack of knowledge that fast 

motion causes blur.

blur

Figure 31. TAM enables failure case analysis in multi-turn conversation. Although Qwen2-VL-2B [51] well recognizes objects with
good explanation results in the first round chat, it fails to identify motion blur related to speed and mistakenly regards the SUV as the
faster car. The clues provided by TAM reveal that the failure to recognize motion blur is the primary reason for this error, highlighting
TAM’s effectiveness in supporting detailed error analysis from multi-turn conversation.


