
U-ViLAR: Uncertainty-Aware Visual Localization for Autonomous
Driving via Differentiable Association and Registration

1. Overview

In addition to the main paper, we provide supplementary
experimental results, detailed insights into our real-world
road test scenario dataset, comprehensive qualitative analy-
ses, and an expanded summary to enhance understanding.

This is a brief overview:

• section 2: Comprehensive Experimental Results

• section 3: SRoad Dataset

• section 4: Visualization

2. Comprehensive Experimental Results

In the following sections, we will delve into the details
not thoroughly covered in the main text.

2.1. HD Map.

The high-definition map (HD Map) in the nuScenes
dataset typically includes the following elements and pre-
cision information:

• Road Boundaries: Define the edges of the road, in-
cluding shoulders and medians.

• Lane Dividers: Markings used to distinguish different
lanes, such as dashed or solid lines.

• Lane Centerlines: Central reference lines of lanes,
used for navigation and localization.

• Crosswalks: Markings for pedestrian crossing areas.

• Traffic Signs: Including traffic lights, stop signs, etc.

• Road Markings: Ground markings such as arrows and
text.

However, when actually inputting into the network, we only
utilize information related to the road structure.

2.2. Navigation Map.

OpenStreetMap (OSM) is a collaborative project to cre-
ate a free and editable world map. It was founded by Steve
Coast in 2004 as a response to the lack of freely available
geographic data from national mapping agencies like the
Ordnance Survey in the UK. OSM allows volunteers to con-
tribute data through surveys, GPS traces, aerial imagery,
and other freely licensed sources. The project is maintained
by the OpenStreetMap Foundation and is licensed under the
Open Database License, making it widely used for electronic
maps, navigation, humanitarian aid, and data visualization.

OSM’s data structure consists of three primary elements:

• Nodes: Points defined by latitude and longitude, repre-
senting specific locations such as landmarks or build-
ings.

• Ways: Lines or areas formed by connecting nodes,
used to represent roads, rivers, or boundaries. Ways
can be open polylines, closed polylines, or areas.

• Relations: Groups of elements (nodes, ways, or other
relations) that describe relationships, such as routes,
administrative boundaries, or restrictions.

Additionally, Tags (key-value pairs) are used to de-
scribe the attributes of these elements. For exam-
ple, highway=residential defines a residential road,
while maxspeed:winter=* specifies winter speed lim-
its. In the actual input to the network, similar to Orienternet,
the OSM data is rendered at a resolution of 0.5 meters per
pixel, providing detailed vector maps with 48 types of se-
mantic information, including road networks and building
footprints.

2.3. Implementation Details.

The localization framework processes [224 × 400] in-
put images through ResNet-18 to generate 32-channel BEV
(Bird’s Eye View) features, with task-specific configura-
tions designed to address different localization challenges.
For fine-grained localization, a high-resolution perception
range of [−60m,60m] longitudinally and [−15m,15m] lat-
erally is established, where the resolution is set to 5 me-
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Methods Inputs
Lateral Error ↓ Longitudinal Error ↓ Orientation Error ↓

MAE(m) RMSE(m) MAE(m) RMSE(m) MAE(◦) RMSE(◦)

Ours-M SRoad + HD map 0.110 0.136 0.284 0.322 0.090 0.124
+ sequence SRoad + HD map 0.086 0.102 0.205 0.245 0.065 0.089
+ uncertainty-aware sequence SRoad + HD map 0.076 0.090 0.182 0.209 0.059 0.074

Table 1. Our ablation experiments on temporal localization using HD maps on the SRoad dataset with our single-frame model.

Methods Inputs
Lateral Error ↓ Longitudinal Error ↓ Orientation Error ↓

MAE(m) RMSE(m) MAE(m) RMSE(m) MAE(◦) RMSE(◦)

Ours-M nuScenes + HD map 0.040 0.049 0.140 0.158 0.075 0.089
w/o PDP. nuScenes + HD map 0.042 0.054 0.144 0.184 0.079 0.099

Ours-M SRoad + HD map 0.110 0.136 0.284 0.322 0.090 0.124
w/o PDP. SRoad + HD map 0.125 0.169 0.305 0.398 0.105 0.148

Table 2. Ablation experiments of Pose Distribution Prior of LU-Guided Registration on the nuScene and SRoad.

ters per pixel (5m/px). To simulate GPS noise, HD (High-
Definition) maps are perturbed with small random transfor-
mations, including rotational perturbations within the range
of 𝜃 ∈ [−2◦,2◦] and translational perturbations within the
range of 𝑡 ∈ [−2m,2m]. Following this, a 120m×120m
search area with a resolution of 5m/px is extracted, centered
on the ego vehicle, to facilitate precise localization.

Conversely, for the task of relocalization, a coarser reso-
lution of 8 meters per pixel (8m/px) is employed, covering a
larger area of [−64m,64m] longitudinally and [−32m,32m]
laterally. To address significant deviations that may occur
in relocalization scenarios, larger perturbations are intro-
duced, including rotational perturbations within the range
of 𝜃 ∈ [−30◦,30◦] and translational perturbations within the
range of 𝑡 ∈ [−30m,30m]. The framework then processes
a 128m×128m search region with a resolution of 8m/px on
the navigation map to ensure robust relocalization.

In the local association constraint, anchor points are es-
tablished at intervals of 5 meters laterally and 10 meters lon-
gitudinally to provide a structured reference for localization.
Additionally, associated point pairs are constructed within a
window of [6m, 12m], ensuring that the localization frame-
work can effectively associate and match points within this
predefined spatial range. This structured approach enhances
the accuracy and reliability of the localization process across
both fine-grained and relocalization tasks.

We train the model using 8 NVIDIA V100 GPUs for 160
epochs, which takes approximately 36 hours to converge.
The model is optimized using an AdamW optimizer with a
weight decay of 1e-4, a batch size of 8, and an initial learning
rate of 1e-4. During training, we employ a cosine annealing
scheduler to adjust the learning rate dynamically.

2.4. ICP-based Method.

We have chosen a non-learning-based Iterative Clos-
est Point (ICP) method as the benchmark for rule-based
approaches. ICP is a classic algorithm widely used for
aligning geometric or semantic features, whose core idea
is to iteratively optimize the correspondence between ob-
served visual elements (e.g., lane markings, stop lines, and
road boundaries) and their semantic counterparts in high-
definition maps, thereby estimating the relative pose (posi-
tion and orientation) between them. Specifically, the ICP
method begins by sampling key visual features and their
semantic equivalents in the map and establishing correspon-
dences through nearest feature association. It then optimizes
the pose transformation by minimizing the distance between
matched features until convergence. In certain cases, the
ICP method can be combined with the Umeyama algorithm,
leveraging its closed-form solution to rapidly estimate rota-
tion and translation transformations, further enhancing com-
putational efficiency.

The reason for selecting ICP as the benchmark method
lies in its status as a classic algorithm in feature alignment,
enjoying widespread industry recognition and mature appli-
cation foundations. As a fundamental algorithm in the field,
ICP demonstrates strong robustness and versatility across
various scenarios, particularly in providing stable pose es-
timation results without relying on data-driven models. By
comparing with the ICP method, we can effectively evalu-
ate the performance, accuracy, and efficiency of other ap-
proaches (e.g., learning-based methods), while providing
a reliable reference standard for subsequent research. Ad-
ditionally, the transparency and interpretability of the ICP
method make it an ideal choice for validating the effective-
ness of new algorithms, especially in scenarios where visual
and semantic elements are matched without the use of point
clouds.
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PU-Guided Association LU-Guided Registration
Lateral Recall@Xm ↑ Longitudinal Recall@Xm ↑ Orientation Recall@X◦ ↑

1m 3m 5m 1m 3m 5m 1◦ 3◦ 5◦

✓ ✓ 69.12 91.25 93.68 32.04 63.00 70.20 64.92 94.84 97.44
✓ 52.32 85.23 92.01 26.32 54.54 67.00 42.54 76.92 86.95

✓ 55.95 87.53 93.92 29.44 58.88 69.23 53.33 85.23 93.48
50.23 83.95 91.90 24.96 53.48 66.01 30.23 70.53 82.54

Table 3. Ablation of PU-Guided Association and LU-Guided Registration using KITTI and OSM.

2.5. Enhancing Temporal Filtering with Localiza-
tion Uncertainty

To demonstrate that the 3DoF visual localization uncer-
tainty output can significantly improve the accuracy and
robustness of temporal filtering results, we designed the fol-
lowing experimental framework. Specifically, we incorpo-
rate localization uncertainty as the variance of observation
noise into the filtering model during the filtering process.
When using a Kalman filter for temporal filtering, the uncer-
tainty dynamically adjusts the observation noise covariance
matrix 𝑅𝑘 in the update step. The implementation details
are as follows:
Uncertainty-Aware Filtering Mechanism First, we define
the observation noise covariance matrix 𝑅𝑘 to be propor-
tional to the localization uncertainty:

𝑅𝑘 = 𝛼𝑈𝑘 . (1)

where 𝑈𝑘 represents the current frame’s localization uncer-
tainty, and 𝛼 is a scaling factor that modulates the uncer-
tainty’s impact on filtering.

The prediction step utilizes the previous state estimate
and state transition model:

𝑥𝑘 |𝑘−1 = 𝐴𝑥𝑘−1 |𝑘−1 +𝐵𝑢𝑘 (2)

𝑃𝑘 |𝑘−1 = 𝐴𝑃𝑘−1 |𝑘−1𝐴
𝑇 +𝑄. (3)

In the update step, the Kalman gain adapts to the
uncertainty-adjusted 𝑅𝑘 :

𝐾𝑘 = 𝑃𝑘 |𝑘−1𝐻
𝑇 (𝐻𝑃𝑘 |𝑘−1𝐻

𝑇 +𝑅𝑘)−1. (4)

Subsequent state correction becomes:

𝑥𝑘 |𝑘 = 𝑥𝑘 |𝑘−1 +𝐾𝑘 (𝑧𝑘 −𝐻𝑥𝑘 |𝑘−1) (5)

𝑃𝑘 |𝑘 = (𝐼 −𝐾𝑘𝐻)𝑃𝑘 |𝑘−1. (6)

This adaptive mechanism ensures that higher uncertainty
values (𝑈𝑘) induce larger observation noise covariance (𝑅𝑘),
thereby reducing filter confidence in current measurements
and increasing reliance on prior predictions. The dynamic

adjustment capability significantly enhances filter robust-
ness during periods of elevated localization uncertainty, par-
ticularly in challenging scenarios with reduced longitudinal
constraints. Quantitative validation of this improvement is
presented below.
Results. As shown in Table 1, the baseline method Ours-
M, using SRoad data and HD maps, significantly reduces
all error metrics when introducing sequential filtering. Fur-
thermore, the sequential filtering enhanced with localization
uncertainty demonstrates even lower errors.

2.6. Ablation of Pose Uncertainty Prior on SRoad.

In Section 4.3 of the main text, we concluded that omit-
ting the Pose Uncertainty Prior as input information for reg-
istration leads to a certain degree of deterioration in our
primary metric, MAE, reflecting a decline in localization
performance. Notably, RMSE experiences an even more
pronounced degradation. This result aligns with the funda-
mental design purpose of the Pose Uncertainty Prior, which
is specifically intended to be effective in the less common
non-unimodal scenarios within the dataset. We conducted
ablation experiments on the more challenging SRoad dataset
to strengthen this conclusion. As shown in Table 2, it is evi-
dent that on SRoad, compared to nuScenes (which contains
more straightforward scenarios), the omission of the Pose
Uncertainty Prior results in a more significant increase in
MAE error.
Ablation of PU-Guided Association and LU-Guided Reg-
istration on KITTI. In Section 4.3 of the main text, we
demonstrated the importance of the relevant modules using
nuScenes and HD maps in the Fine-grained Localization
task. Additionally, we conducted ablation experiments on
the Large-Scale Relocalization task using KITTI and OSM.
As shown in Table 3, the experimental results exhibit con-
sistent conclusions.

3. SRoad Dataset
The SRoad dataset is a comprehensive and diverse dataset

specifically designed to address the challenges of modern ur-
ban driving scenarios. It spans over 30 cities and captures
various road structures, traffic conditions, and environmen-
tal factors. With more than 500,000 frames, including a ded-
icated test set of 100,000 frames, the SRoad dataset provides
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Figure 1. The effect of projecting a map onto a camera image
based on the initial pose(upper) and the final results predicted by
U-ViLAR(lower).

Figure 2. The effect of projecting a map onto a camera image
based on the initial pose(upper) and the final results predicted by
U-ViLAR(lower).

a robust foundation for developing and evaluating reliable
localization and mapping algorithms. Notably, over 60% of
the dataset scenarios present specific challenges critical for
testing the robustness and generalization capabilities of au-
tonomous driving systems. These challenges include com-
plex intersections, merging and diverging zones, congested
areas, and areas under viaducts—all common in real-world
urban environments but often underrepresented in existing
datasets. By incorporating such diverse and challenging sce-
narios, the SRoad dataset enables us to push the boundaries
of current technologies, ensuring that our solutions are not
only accurate but also adaptable to the complexities of real-
world driving conditions. We discuss the selection of sen-
sors for the SRoad dataset collection vehicle in Section 3.1,

Figure 3. We plot the 3-DOF maximum absolute error of U-
VilLAR’s predicted pose in the test set(The lateral and longitudinal
disturbance values were set as 2m, and the heading Angle distur-
bance values were set as 2°). The horizontal and vertical axes are
latitude and longitude respectively.

and the methods for acquiring ground truth localization are
described in Section 3.2.

3.1. Sensor Suite

The SRoad data acquisition vehicle has an extensive sen-
sor suite, designed to capture a comprehensive range of
environmental data. The sensor configuration is as follows:

• Cameras: The vehicle includes seven cam-
eras, covering various perspectives. The spe-
cific models are onsemi narrow, onsemi obstacle,
spherical backward, spherical left backward, spheri-
cal left forward, spherical right backward, and spher-
ical right forward. These cameras are mounted around
the vehicle, offering 360-degree coverage. Please refer
to the sensor parameter file we provided for specific
details.

• LiDAR System: A 1+4 LiDAR setup is employed, con-
sisting of a top-mounted Hesai P90 and four additional
rs-bpearl LiDARs positioned for blind spot reduction
at the front, rear, left, and right sides of the vehicle.
(Current data collection vehicles suffer from signifi-
cant blind spots. We aim to achieve over 90% coverage
of these existing blind areas by integrating supplemen-
tary LiDAR sensors. Figure 4 illustrates the field of
view and blind spots of the Hesai P90.)

Apart from the primary visual and LiDAR sensors, the
vehicle is outfitted with a range of auxiliary sensors to en-
hance data accuracy and environmental understanding:
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Figure 4. Field of view and blind spots of the Hesai P90 LiDAR
sensor.

• Onboard Antenna: The GNSS-850 antenna encom-
passes a comprehensive range of GNSS frequencies.

• IMU: The ISA-100C is a near-navigation-grade IMU
sensor, featuring fiber optic gyroscopes and a full-
temperature-compensated Micro-Electro-Mechanical
Systems (MEMS) accelerometer.

• GNSS Receiver: The PwrPak7D by Novatel is a dual-
antenna GNSS receiver, supporting most GNSS system
frequencies.

• 4G Network Connection: The MD-649 module en-
sures consistent connectivity.

• Novatel Equipment: The PP7 device is a critical com-
ponent for data acquisition.

3.2. Acquisition of Ground Truth

The PP7 device outputs GNSS positions and differential
heading data, complemented by low-precision IMU mea-
surements. The ISA-100C provides high-precision IMU
measurements. These data, integrated with raw satellite ob-
servations recorded by the PP7, are processed through the
IEOUT software to yield high-accuracy positioning ground
truth.

4. Visualization
We provide video and image visualizations that more

effectively demonstrate our method.

4.1. Video Result

Performance Video on SRoad Dataset We provide two
videos in mp4 format, displaying the global localiza-
tion performance under different quality initial values, as
well as a comparison with traditional ICP-based methods:
Demo U-ViLAR.mp4

High-Precision Ground Truth Demonstration of SRoad
Dataset We also provided three videos in mp4 format, in-
cluding the original information collected by the collection
vehicle, the calculated localization ground truth, and the re-
construction results of obstacles/road structure, demonstrat-
ing the rigor of the SRoad dataset truth value production
method.

• SRoad localization trajectory.mp4

• SRoad obstacle rec.mp4

• SRoad road juction rec.mp4

4.2. More Results Visualization

As shown in Figures 1, we compared the effect of
projecting a map onto a camera image based on the ini-
tial pose(upper) and the final results predicted by U-
ViLAR(lower).

As shown in Figures 3, we plot the 3-DOF maximum
absolute error of U-VilLAR’s predicted pose in the test set
(the lateral and longitudinal disturbance values were set as
2 meters, and the heading angle disturbance values were set
as 2°). The horizontal and vertical axes represent latitude
and longitude, respectively. We observe that the positions
with more significant errors are mostly concentrated in areas
such as intersections.

We visualized the performance in scenarios where local-
ization stability is challenging and showcased its advantages
over the traditional ICP-Based method:

• Figures 5 to 7 demonstrate that both the ICP-Based
Method(indicated in red) and ours(indicated in green)
errors are within normal ranges. However, longitudinal
observations in this scenario caused a certain degree of
degradation. As a result, the longitudinal localization
still remains near the initial pose estimate of GNSS
(indicated in orange). It has not been optimized to the
ground truth value (indicated in white). Nevertheless,
ours exhibits smaller overall errors in both longitudinal
and lateral directions.

• Figures 8 to 11 illustrate that the traditional ICP-Based
method, due to poor detection of some lane lines, leads
to matching failures and more significant lateral errors,
whereas ours exhibits smaller lateral errors

• Figures 12 to 15 show that in intersection/merging and
diverging scenarios, the traditional ICP-Based method
experiences increased longitudinal errors due to poor
detection or incorrect association of some lane lines,
whereas ours has smaller errors in both lateral and
longitudinal directions.
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• Figures 16 to 18 demonstrate that the matching in the
traditional ICP-Based method fails to compute regis-
tration values due to lane lines being detected too short
or not detected at all, while ours continues to operate
normally.

References
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Figure 5. Visualization of Localization Performance in Scenario 1 within the SRoad Dataset.

Figure 6. Visualization of Localization Performance in Scenario 2 within the SRoad Dataset.
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Figure 7. Visualization of Localization Performance in Scenario 3 within the SRoad Dataset.

Figure 8. Visualization of Localization Performance in Scenario 4 within the SRoad Dataset.
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Figure 9. Visualization of Localization Performance in Scenario 5 within the SRoad Dataset.

Figure 10. Visualization of Localization Performance in Scenario 6 within the SRoad Dataset.
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Figure 11. Visualization of Localization Performance in Scenario 7 within the SRoad Dataset.

Figure 12. Visualization of Localization Performance in Scenario 8 within the SRoad Dataset.
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Figure 13. Visualization of Localization Performance in Scenario 9 within the SRoad Dataset.

Figure 14. Visualization of Localization Performance in Scenario 10 within the SRoad Dataset.

11



Figure 15. Visualization of Localization Performance in Scenario 11 within the SRoad Dataset.

Figure 16. Visualization of Localization Performance in Scenario 12 within the SRoad Dataset.
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Figure 17. Visualization of Localization Performance in Scenario 13 within the SRoad Dataset.

Figure 18. Visualization of Localization Performance in Scenario 14 within the SRoad Dataset.
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